Show your work and justify all answers.

For this assignment, we do not yet know anything about characteristic polynomials.

(12 pts)

- (1) [+2] Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation with $T(\vec{e_1}) = \vec{0}$ and $T(\vec{e_2}) = \vec{e_1}$. Is T diagonalizable?
- (2) [+2] Let $T, P: \mathbb{R}^2 \to \mathbb{R}^2$ be linear transformations where T projects \mathbb{R}^2 onto the x-axis and $P\begin{pmatrix} 1\\2 \end{pmatrix} =$

 $\begin{bmatrix} 2\\4 \end{bmatrix} \text{ and } P\left(\begin{bmatrix} -1\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\1 \end{bmatrix}.$ Find the matrix representation of $T \circ P$ with respect to the standard basis.

- (3) Let $A \in \mathbb{C}^{n \times n}$ and suppose that $\vec{v} \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue λ .
 - (a) [+1] Show that if $A^k = O_n$ for some positive integer k, then $\lambda = 0$.
 - (b) [+1] Show that if p is any polynomial, then \vec{v} is an eigenvector for p(A) with eigenvalue $p(\lambda)$.
 - (c) [+1] Show that if A is unitary, then $|\lambda| = 1$. (Hint: consider Hermitian inner products)
- (4) [+3] Let V be any vector space over \mathbb{C} and $T: V \to V$ be a linear transformation. Suppose that $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are *distinct* and that $v_1, \ldots, v_n \in V$ are non-zero vectors satisfying $T(v_i) = \lambda_i v_i$. Prove that $\{v_1, \ldots, v_n\}$ is linearly independent. (Hint: induction on n)
- (5) [+2] Show that $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if A is unitarily similar to a diagonal matrix with real entries; that is, $A = UDU^*$ where U is unitary and $D \in \mathbb{R}^{n \times n}$ is diagonal.
- (6) **Bonus** $[+1]^1$ Let $T_1, \ldots, T_n \in \mathbb{C}^{n \times n}$ be upper-triangular matrices. Show that if $(T_i)_{ii} = 0$ for all $i \in [n]$, then $T_1T_2\cdots T_n = O_n$.

¹We will need to use this result in lecture, so even if you do not solve this problem, at least read the proof once it is posted.