Show your work and justify all answers.

(11 pts)

- (1) This exercise will walk through a proof that not every norm is associated with an inner product.
 - (a) [+1] Let V be an inner product space over \mathbb{C} with inner product $\langle \cdot, \cdot \rangle$ and let $\|\cdot\|$ be the associated norm. Prove that for any $x, y \in V$, we have

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}).$$

(This is known as the parallelogram rule)

- (b) [+1] For a vector $\vec{x} \in \mathbb{C}^n$, the ℓ_1 -norm of \vec{x} is defined as $\|\vec{x}\|_1 = \sum_{k=1}^n |x_k|$. Prove that $\|\cdot\|_1$ is indeed a norm on \mathbb{C}^n .
- (c) [+2] Show that for $n \geq 2$, there is no inner product on \mathbb{C}^n associated with the ℓ_1 -norm.
- (2) [+2] Let \mathcal{P}_n denote the space of polynomials of degree at most n with real coefficients as a vector space over \mathbb{R} . Equip \mathcal{P}_n with the inner product $\langle p, q \rangle = \int_{-1}^1 p(x)q(x)dx$. (While you do not have to prove it, convince yourself that $\langle \cdot, \cdot \rangle$ is indeed an inner product on \mathcal{P}_n)

Use the Gram–Schmidt algorithm to find an orthonormal basis for \mathcal{P}_2 by starting with the basis $\{1, x, x^2\}$.

- (3) Let $\langle \cdot, \cdot \rangle$ denote the standard Hermitian inner product on \mathbb{C}^n .
 - (a) (Not graded. This is just a good fact to keep in mind.¹) Fix $A, B \in \mathbb{C}^{m \times n}$. Show that A = B if and only if $A\vec{x} = B\vec{x}$ for every $\vec{x} \in \mathbb{C}^n$.
 - (b) [+2] Fix $A, B \in \mathbb{C}^{n \times n}$. Show that A = B if and only if $\langle \vec{x}, A\vec{y} \rangle = \langle \vec{x}, B\vec{y} \rangle$ for all $\vec{x}, \vec{y} \in \mathbb{C}^n$.
 - (c) [+1] Show that if $A \in \mathbb{C}^{n \times n}$, then for any $\vec{x}, \vec{y} \in \mathbb{C}^n$, we have $\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^*\vec{y} \rangle$.
 - (d) [+1] A matrix $A \in \mathbb{C}^{n \times n}$ is called *Hermitian* if $A^* = A$. Show that $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if $\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A\vec{y} \rangle$ for all $\vec{x}, \vec{y} \in \mathbb{C}^n$.
 - (e) [+1] A matrix $A \in \mathbb{C}^{n \times n}$ is called *unitary* if $A^{-1} = A^*$; i.e., $A^*A = I_n$. Show that $A \in \mathbb{C}^{n \times n}$ is unitary if and only if $\langle A\vec{x}, A\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for all $\vec{x}, \vec{y} \in \mathbb{C}^n$.
- (4) **Bonus**[+1] We will show in class that there are infinite-dimensional inner product spaces V which have subspaces $S \leq V$ with $S^{\perp\perp} \neq S$. Despite this, prove that if V is any inner product space and $S \leq V$, then $S^{\perp\perp\perp} = S^{\perp}$.

¹wink wink nudge nudge