
Matrices and Linear Trans. Assignment #4 Due July 12

Show your work and justify all answers.

(12 pts)

(1) [+2] Let R>0 := {x ∈ R : x > 0}. For x, y ∈ R>0, define x ⊕ y = xy and for c ∈ R, define c � x = xc.

Let V = (R>0,⊕,�) with ⊕ as vector addition and � as scalar multiplication. Show that V is a vector

space over R. Be sure to verify all 10 axioms listed on page 78 of Hefferon. (You may take all of the

basic properties of multiplication and exponentiation for granted)

Solution: Before we verify the 10 axioms, we need to know that V 6= ∅. But this is clear since certainly

there are positive real numbers, such as 3435.

1. Certainly x⊕ y = xy ∈ R>0 for any x, y ∈ R>0 since the product of positive numbers is positive.

2. Since standard multiplication is commutative, so is ⊕.

3. Since standard multiplication is associative, so is ⊕.

4. We notice that 0V = 1 since 1⊕ x = 1 · x = x for any x ∈ R>0.

5. We notice that for any R>0, 1
x ∈ R>0 and 1

x ⊕ x = 1 = 0V , so every vector has an additive inverse.

6. Certainly for any x ∈ R>0 and c ∈ R, we have c⊕ x = xc ∈ R>0.

7. We verify for c, d ∈ R and x ∈ R>0, (c+ d)⊕ x = xc+d = xcxd = (c� x)⊕ (d� x).

8. We verify for c ∈ R and x, y ∈ R>0, c� (x⊕ y) = (xy)c = xcyc = (c� x)⊕ (c� y).

9. We verify for c, d ∈ R and x ∈ R>0, (cd)� x = xcd = (xd)c = c� (d� x).

10. For any x ∈ R>0, we have 1� x = x1 = x.

�

(2) [+1] Let V = (R+,⊕,�) where ⊕ and � are as in problem (1) and R+ = {x ∈ R : x ≥ 0}. Is this new

V still a vector space?

Solution: No, axiom 5 fails to hold. Notice that 0V = 1 still. However, 0 ∈ R+, but there is no x ∈ R+

with x⊕ 0 = 1 = 0V , i.e. 0 does not have an additive inverse. �

(3) [+1] Fix A ∈ Rn×n and λ ∈ R. Define E = {~x ∈ Rn : A~x = λ~x}. Prove that E is a subspace of Rn (this

is known as the λ-eigenspace of A).

Solution: Firstly, A~0 = ~0 = λ~0, so ~0 ∈ E. Now, if ~x, ~y ∈ E and c, d ∈ R, then A(c~x+d~y) = cA~x+dA~y =

cλ~x+ dλ~y = λ(c~x+ d~y). Therefore, c~x+ d~y ∈ E. We conclude that E is a subspace of Rn.

Alternatively, we could notice that A~x = λ~x if and only if (A − λIn)~x = 0, so if B = A − λIn, then

E = {~x ∈ Rn : B~x = ~0}. We proved in class that any set of this form is a subspace. �

(4) [+2] Use induction to prove that if A1, . . . , An ∈ Rm×m are non-singular matrices, then their product

A1 · · ·An is non-singular as well. You may freely use the results of any problems on previous homeworks

or discussion sessions. (Beware of the “all horses are brown” trap!)

Solution: We prove by induction on n.

Base Cases: n = 1 is trivial since A1 is non-singular whenever A1 is non-singular.

For n = 2, problem (5c) from DSW1 shows that if A1, A2 are non-singular, then so is A1A2.

Induction hypothesis: For some N > 2, if A1, . . . , AN−1 ∈ Rm×m are non-singular, then so is

A1 · · ·AN−1.
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Induction step: Let A1, . . . , AN ∈ Rm×m be non-singular. Assuming the induction hypothesis, we

need to show that A1 · · ·AN is also non-singular.

Firstly, set B = A1 · · ·AN−1, so A1 · · ·AN = BAN . Now, by the induction hypothesis, we know that

B is non-singular. Since also AN is non-singular by assumption, we can apply the n = 2 case (which

was proved as a base case) to conclude that BAN is non-singular as needed. �

(5) [+3] Let V be a vector space and let U,W ≤ V (recall that “≤” here means “is a subspace of”). Prove

that U ∪W is a subspace if and only if either U ⊆W or W ⊆ U .

Solution: (⇐) Without loss of generality, suppose U ⊆W (the other case is symmetric). Then U ∪W =

W , which we know is a subspace by assumption.

(⇒) We prove the contrapositive. Suppose that U 6⊆ W and W 6⊆ U . This means that there is some

u ∈ U \W and w ∈ W \ U . Note that u,w ∈ U ∪W ; we claim that u+ w /∈ U ∪W , thus showing that

U ∪W is not a subspace.

Suppose for the sake of contradiction that u + w ∈ U ∪ W , so either u + w ∈ U or u + w ∈ W .

Without loss of generality, suppose that u+w ∈ U (the other case is symmetric). Since u ∈ U and U is

a subspace, this means that we must have w = (u+ w)− u ∈ U ; a contradiction. �

(6) Let V be a vector space and S, T ⊆ V (not necessarily subspaces).

(a) [+1] Must it be the case that span(S ∪ T ) = spanS ∪ spanT?

Solution: No. Let, say, V = R2 and let S, T be any subspaces of V with S 6⊆ T and T 6⊆ S, e.g.

T = span~e1 and S = span~e2. We know that span(S ∪ T ) is a subspace of V , yet by problem (5),

we know that spanS ∪ spanT = S ∪ T is not a subspace, so they cannot be equal. �

(b) [+1] Must it be the case that span(S ∩ T ) = spanS ∩ spanT?

Solution: No. Consider V = R, S = {~e1} and T = {2~e1}. Notice that spanS = spanT = R, so

spanS ∩ spanT = R. However, span(S ∩ T ) = span∅ = {~0}. �

(7) [+1] Find a set of three vectors {v1, v2, v3} which is linearly dependent, but {v1, v2}, {v1, v3} and {v2, v3}
are all linearly independent. (You get to pick the vector space)

Solution: Say our vector space is R2. Pick v1 = ~e1, v2 = ~e2 and v3 = ~1 where ~1 is the 2-dimensional

all-ones vector. We see that {v1, v2, v3} is linearly dependent since ~e1 + ~e2 −~1 = ~0.

For {~e1, ~e2}, if we had ~0 = c1~e1 + c2~e2 =

[
c1

c2

]
, then certainly c1 = c2 = 0, so these vectors are linearly

independent.

For {~e1,~1}, if we had ~0 = c1~e1 + c2~1 =

[
c1 + c2

c2

]
, then solving this linear system tells us that

c1 = c2 = 0, so these vectors are also linearly independent.

The same reasoning holds to show that {~e2,~1} is linearly independent. �


