Show your work and justify all answers.

$$(11 \text{ pts})$$

(1)
$$[+2]$$
 Find $\begin{bmatrix} 0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}^{-1}$ by using Gaussian elimination.
(2) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ where $a, b, c, d \in \mathbb{R}$ are arbitrary.

- (a) [+1] Show that $AB = (ad bc)I_2$.
- (b) [+2] Show that A is non-singular if and only if $ad bc \neq 0$.
- (You may use the result of any other problem on this assignment, even if you haven't proved it)
- (3) [+1] Suppose that $A, B \in \mathbb{R}^{n \times n}$ are both non-singular. Must A + B also be non-singular?
- (4) [+2] Let $A, B \in \mathbb{R}^{n \times n}$ where A is non-singular. Prove that $AB = O_n$ if and only if $B = O_n$. Here O_n is the $n \times n$ zero matrix.
- (5) [+3] For a matrix $A \in \mathbb{R}^{m \times n}$, the *i*th row-sum of A is $\sum_{j=1}^{n} A_{ij}$ (i.e. the sum of the entries in the *i*th row).

Let $A \in \mathbb{R}^{n \times n}$ be non-singular, and suppose that every row-sum of A is equal to k. What are the row-sums of A^{-1} ?