(11 pts)

- (1) [+1] Suppose that A is a non-singular matrix with $A, A^{-1} \in \mathbb{Z}^{n \times n}$; that is both A and A^{-1} have only integer entries. What are the possible values for det A?
- (2) [+1] Show that if n is odd, then $A A^T$ is singular for all $A \in \mathbb{C}^{n \times n}$.
- (3) [+1] Find the eigenvalues and eigenspaces of $\begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix}$.
- (4) [+2] Suppose that $A \in \mathbb{C}^{n \times n}$ satisfies $A^2 = A$. Prove that A is diagonalizable. (Hint: you may find some inspiration in a previous homework)
- (5) Suppose that $A \in \mathbb{C}^{n \times n}$ has characteristic polynomial $P_A(t) = (t \lambda_1)^{m_1} \cdots (t \lambda_k)^{m_k}$ where $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ are distinct; that is, A has eigenvalues $\lambda_1, \ldots, \lambda_k$ where λ_i has multiplicity m_i . Define $Q_A(t) = (t \lambda_1) \cdots (t \lambda_k)$.
 - (a) [+1] Show that if A is diagonalizable, then $Q_A(A) = O_n$.
 - (b) [+1] Find an example of some $A \in \mathbb{C}^{n \times n}$ for which $Q_A(A) \neq O_n$.
- (6) [+2] Show that $A \in \mathbb{C}^{n \times n}$ is Hermitian if and only if there is an orthonormal basis $\{\vec{v}_1, \ldots, \vec{v}_n\}$ for \mathbb{C}^n and scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $A = \sum_{i=1}^n \lambda_i \vec{v}_i \vec{v}_i^*$.
- (7) For a matrix $A \in \mathbb{C}^{n \times n}$, the *trace* of A is defined as tr $A = \sum_{i=1}^{n} A_{ii}$; that is, the sum of the diagonal entries.
 - (a) [+1] Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$. Show that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
 - (b) [+1] Let $A \in \mathbb{C}^{n \times n}$ be a matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ (not necessarily distinct). Show that $\operatorname{tr} A = \lambda_1 + \cdots + \lambda_n$.
- (8) **Bonus**[+1] Let $\{\vec{v}_1, \ldots, \vec{v}_n\}$ be *any* orthonormal basis for \mathbb{C}^n . Show that $\operatorname{tr} A = \sum_{k=1}^n \langle \vec{v}_i, A \vec{v}_i \rangle$ where $\langle \cdot, \cdot \rangle$ is the standard Hermitian inner product.