
Matrices and Linear Trans. Discussion Session #3 July 19

Justify all answers! I recommend doing these questions out of order and focus first on questions with which

you are less comfortable.

(1) Recall that A ∈ Cn×n is called Hermitian if A∗ = A. Show that if A is Hermitian, then 〈~x,A~x〉 ∈ R for

all ~x ∈ Cn, where 〈·, ·〉 is the standard Hermitian inner product.

Solution: By problem (d) on HW6, we know that 〈~x,A~x〉 = 〈A~x, ~x〉 for all ~x ∈ Cn. On the other hand,

〈A~x, ~x〉 = 〈~x,A~x〉, so 〈~x,A~x〉 = 〈~x,A~x〉, which means that 〈~x,A~x〉 ∈ R. �

(2) Fix A ∈ Rm×n and let 〈·, ·〉 be the standard Euclidean inner product. Determine (NulA)⊥.

Solution: We claim that (NulA)⊥ = RowA = Col(AT ).

We know that NulA = {~x ∈ Rn : A~x = ~0}. In other words, if ~ai is the ith row of A, then we know

that 〈~ai, ~x〉 = 0 whenever ~x ∈ NulA, so (NulA)⊥ ⊇ RowA. Now, since A ∈ Rm×n, we know that

dim NulA + dim(NulA)⊥ = n = dim NulA + dim RowA, so dim RowA = dim(NulA)⊥, so since all of

these spaces are finite dimensional and RowA ⊆ (NulA)⊥, we must have (NulA)⊥ = RowA. �

(3) Fix A ∈ Cm×n and let 〈·, ·〉 be the standard Hermitian inner product. Determine (NulA)⊥.

Solution: We claim that (NulA)⊥ = Col(A∗) = Row(A).

Since NulA = {~x ∈ Cn : A~x = ~0}, we observe that if ~ai is a column of A∗, then ~a∗i is a row of A, so

by the same reasoning as problem (2), we see that 〈~ai, ~x〉 = ~a∗i ~x = 0, so Col(A∗) ⊆ (NulA)⊥. The full

conclusion again follows via the rank–nullity theorem as in the previous problem. �

(4) Let V be a finite-dimensional inner product space and let {v1, . . . , vn} be an orthonormal basis.

(a) Let {v1, . . . , vn} be an orthonormal basis for V . Show that
∑n
`=1 |〈v`, x〉|2 = ‖x‖2 for any x ∈ V .

Solution: We can write x =
∑n
`=1〈v`, x〉v`, so

‖x‖2 =

〈 n∑
`=1

〈v`, x〉v`,
n∑
`=1

〈v`, x〉v`
〉

=

n∑
t=1

〈vt, x〉
〈 n∑
`=1

〈v`, x〉v`, vt
〉

=
∑
t,`

〈vt, x〉〈v`, x〉〈v`, vt〉 =

n∑
`=1

|〈v`, x〉|2.

�

(b) Let {v1, . . . , vk} be an orthonormal set (not necessarily a basis). Show that
∑k
`=1 |〈v`, x〉|2 ≤ ‖x‖2

for any x ∈ V . This is known as Bessel’s inequality.

Solution: Suppose that dimV = n, so through the Gram–Schmidt algorithm, we can extend

{v1, . . . , vk} to an orthonormal basis {v1, . . . , vn}. By part (a) and the fact that |c|2 ≥ 0 for any

c ∈ C, we bound

‖x‖2 =

n∑
`=1

|〈v`, x〉|2 ≥
k∑
`=1

|〈v`, x〉|2.

�

(5) A collection of vectors ~x1, . . . , ~xm ∈ Rn is called equidistant if there is some d > 0 for which ‖~xi−~xj‖ = d

for all i 6= j, where ‖ · ‖ is the standard Euclidean norm.
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(a) Find a collection of n+ 1 equidistant vectors in Rn.1

(Hint: consider the standard basis and some multiple of the all-ones vector)

Solution: Observe that for any i 6= j ∈ [n], we have ‖~ei − ~ej‖2 = 2. Furthermore, for any γ ∈ R
and i ∈ [n], we have ‖~ei − γ~1‖2 = (n − 1)γ2 + (1 − γ)2. We claim that there is a choice of γ for

which (n− 1)γ2 + (1− γ)2 = 2, which would mean that {~e1, . . . , ~en, γ~1} is equidistant.

We could explicitly solve for such a γ, but that’s no fun! Instead, set f(γ) = (n− 1)γ2 + (1− γ)2

and notice that f : R → R is a continuous function. Now, f(0) = 1 < 2 and limγ→∞ f(γ) = ∞, so

by the intermediate value theorem, there must be some γ ∈ R for which f(γ) = 2. �

(b) For vectors ~x1, . . . , ~xm ∈ Cn, the Gram matrix is the matrix G ∈ Cm×m where Gij = 〈~xi, ~xj〉,
where 〈·, ·〉 is the standard Hermitian inner product. Prove that if G is the Gram matrix of some

collection of vectors ~x1, . . . , ~xm ∈ Cn, then rankG ≤ n.

Solution: Set A =
[
~x1 · · · ~xm

]
, then G = A∗A; hence rankG = rankA. Now, A has n rows, so

rankG = rankA ≤ n. �

(c) Show that there can be no more than n+ 1 equidistant vectors in Rn.

(Hint: Without loss of generality, suppose that one of the vectors is ~0 and determine the inner

products and norms of the remaining vectors. Then apply part (b).)

Solution: Suppose that ~x0, ~x1, . . . , ~xm ∈ Rn are equidistant and ~x0 = ~0. Also, without loss of

generality, the common distance is 1. Therefore, for i ∈ [m], we observe that ‖~xi‖2 = ‖~xi−~x0‖2 = 1.

Thus, for i 6= j ∈ [m], we have

1 = ‖~xi − ~xj‖2 = 〈~xi − ~xj , ~xi − ~xj〉 = ‖~xi‖2 − 2〈~xi, ~xj〉+ ‖~xj‖2

= 2− 2〈~xi, ~xj〉

=⇒ 〈~xi, ~xj〉 = 1/2.

Let G be the Gram matrix of ~x1, . . . , ~xm, so by above we know that G has 1’s on the diagonal and

1/2’s on the off-diagonal.

By the work done in our proof of Fisher’s theorem, such a G has full rank, so rankG = m. But

then by part (b), we know that m = rankG ≤ n. Thus, m ≤ n, so there were at most n+ 1 vectors

to begin with. �

(d) Can you give an upper bound on the size of an equidistant set in Cn?

Solution: We can give an upper bound of 2n+ 1. Following the same steps as in part (c), we again

find that ‖~xi‖2 = 1 for all i ∈ [m], but we now find that for i 6= j ∈ [m],

1 = 〈~xi, ~xj〉+ 〈~xj , ~xi〉.

We thus see that if G is the Gram matrix of ~x1, . . . , ~xm, then G+GT has 2’s on the diagonal and

1’s on the off-diagonal, and therefore rank(G + GT ) = m. Now, rankG = rank(GT ) ≤ n, so by

problem (1a) on HW5, we see that m = rank(G + GT ) ≤ 2n, so in all, there were at most 2n + 1

vectors to begin with. �

1Such a set forms the vertices of what is called a regular simplex, which is the higher-dimensional analogue of an equilateral

triangle and equilateral tetrahedron.
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(e) [+∞ bonus points] Instead of the Euclidean norm, consider the `1-norm from HW6. Notice that

{±~e1, . . . ,±~en} is equidistant under ‖·‖1 with common distance 2, so we can have sets of 2n vectors

in Rn which are `1-equidistant. Can there be any more than 2n such vectors?

Solution: No one knows the answer to this question for n ≥ 6. Currently, the best known upper

bound is Cn log n for some fixed constant C. �

(6) Consider Cn equipped with the standard Hermitian inner product. Let S ≤ Cn and let {~s1, . . . , ~sk} be

any basis for S (not necessarily orthonormal). Set A =
[
~s1 · · · ~sk

]
∈ Cn×k.

(a) Show that projS ~v = ~p if

1. A∗~v = A∗~p and

2. A~x = ~p for some ~x ∈ Ck.

(Recall that, in general, projS v = p if p ∈ S and v − p ∈ S⊥.)

Solution: Using the hint in the parentheses, projS ~v = ~p if ~p ∈ S and ~v − ~p ∈ S⊥. Certainly ~p ∈ S
if and only if ~p ∈ ColA, i.e. A~x = ~p has a solution, and ~v− ~p ∈ S⊥ if and only if A∗(~v− ~p) = ~0, i.e.

A∗~v = A∗~p. �

(b) Show that projS ~v = A(A∗A)−1A∗~v. Be sure to justify why (A∗A)−1 exists.

Solution: We first note that A ∈ Cn×k and rankA = k since dimS = k. Thus, A∗A ∈ Ck×k and

rank(A∗A) = rankA = k, so A∗A is indeed non-singular.

Now, by part (a), we know that projS ~v = ~p if A∗~v = A∗~p and A~x = ~p for some ~x ∈ Ck.

Substitute the second equation into the first to find that projS ~v = A~x whenever A∗A~x = A∗~v. Since

A∗A is non-singular, we can solve for ~x = (A∗A)−1A∗~v, and thus projS ~v = A~x = A(A∗A)−1A∗~v.

�

(7) This is an interesting difference between the Euclidean and Hermitian inner products.

(a) Find a non-zero matrix A ∈ R2×2 such that 〈~x,A~x〉 = 0 for all ~x ∈ R2. Here 〈·, ·〉 is the standard

Euclidean inner product.

Solution: Let A =

[
0 1

−1 0

]
. Observe that A~x =

[
x2

−x1

]
, so 〈~x,A~x〉 = x1x2 − x2x1 = 0. �

(b) Challenge: Show that the same is impossible for the Hermitian inner product. That is, show that

if A ∈ Cn×n has the property that 〈~x,A~x〉 = 0 for all ~x ∈ Cn, then A = On.

(Hint: Show that this implies that 〈~x,A~y〉 = 0 for all ~x, ~y ∈ Cn by considering a linear combination

of ~x and ~y. Then apply problem (3b) from HW6.)

Solution: Let λ ∈ C be non-zero and ~x, ~y ∈ Cn. We see that

0 = 〈λ~x+ ~y,A(λ~x+ ~y)〉 = λ̄λ〈~x,A~x〉+ λ̄〈~x,A~y〉+ λ〈~y,A~x〉+ 〈~y,A~y〉

= λ̄〈~x,A~y〉+ λ〈~y,A~x〉

=⇒ 〈~x,A~y〉 = (λ/λ̄)〈~y,A~x〉,

since λ 6= 0. Suppose for the sake of contradiction that 〈~x,A~y〉 6= 0, so we must also have 〈~y,A~x〉 6= 0.

Hence, for any non-zero λ ∈ C, we must have

〈~x,A~y〉
〈~y,A~x〉

=
λ

λ̄
,
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implying that λ/λ̄ is constant for all non-zero λ ∈ C. This is, of course, absurd since 1/1̄ = 1 while

i/̄i = −1.

Thus, 〈~x,A~y〉 = 0 for all ~x, ~y ∈ Cn, so we find that A = On by problem (3b) on HW6. �


