Matrices and Linear Trans. Discussion Session #3 July 19

Justify all answers! I recommend doing these questions out of order and focus first on questions with which

you are less comfortable.

(1) Recall that A € C™*" is called Hermitian if A* = A. Show that if A is Hermitian, then (Z, AZ) € R for
all # € C", where (-, -) is the standard Hermitian inner product.

Solution: By problem (d) on HW6, we know that (Z, AZ) = (AZ, Z) for all £ € C™. On the other hand,
(AZ, %) = (&, AZ), so (¥, AT) = (¥, AT), which means that (¥, AT) € R. O

(2) Fix A € R™ ™ and let (-,-) be the standard Euclidean inner product. Determine (Nul A)*.

Solution: We claim that (Nul A)* = Row A = Col(AT).

We know that Nul A = {Z € R" : AZ = (}. In other words, if @ is the ith row of A, then we know
that (@;,7) = 0 whenever & € Nul 4, so (NulA)* O Row A. Now, since A € R™*" we know that
dim Nul A + dim(Nul A)* = n = dim Nul A + dim Row A, so dim Row A = dim(Nul A)*, so since all of
these spaces are finite dimensional and Row A C (Nul A)*, we must have (Nul A)* = Row A. O

(3) Fix A € C™*™ and let (-,-) be the standard Hermitian inner product. Determine (Nul A)~.

Solution: We claim that (Nul A)* = Col(A*) = Row(A).
Since NulA = {# € C" : AZ = 6}, we observe that if @; is a column of A*, then @} is a row of A, so
by the same reasoning as problem (2), we see that (@;,¥) = @} = 0, so Col(A*) C (Nul A)*. The full

conclusion again follows via the rank—nullity theorem as in the previous problem. (|

(4) Let V be a finite-dimensional inner product space and let {vy,...,v,} be an orthonormal basis.
(a) Let {v1,...,v,} be an orthonormal basis for V. Show that > ,_, [(ve, z)|> = ||z||? for any x € V.

Solution: We can write . = Y, (v, 2)vy, s0
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(b) Let {v1,...,vx} be an orthonormal set (not necessarily a basis). Show that Zle [(ve, z)|? < [|z]2

for any x € V. This is known as Bessel’s inequality.

Solution: Suppose that dimV = n, so through the Gram-Schmidt algorithm, we can extend
{v1,...,v} to an orthonormal basis {v1,...,v,}. By part (a) and the fact that |c[?> > 0 for any
c € C, we bound
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(5) A collection of vectors &1, ..., Zm € R™ is called equidistant if there is some d > 0 for which ||&; —Z;|| = d

for all ¢ # j, where || - || is the standard Euclidean norm.
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(a) Find a collection of n + 1 equidistant vectors in R”H

(Hint: consider the standard basis and some multiple of the all-ones vector)

Solution: Observe that for any i # j € [n], we have ||&; — €;|> = 2. Furthermore, for any v € R
and i € [n], we have [|&; —vI||> = (n — 1) + (1 — ). We claim that there is a choice of ~ for
which (n — 1)72 + (1 — 4)? = 2, which would mean that {é},...,&,,71} is equidistant.

We could explicitly solve for such a v, but that’s no fun! Instead, set f(7) = (n — 1)v% + (1 — 7)?
and notice that f: R — R is a continuous function. Now, f(0) =1 < 2 and lim,_, f(7) = o0, so
by the intermediate value theorem, there must be some v € R for which f(y) = 2. O

(b) For vectors &1,...,Zm, € C", the Gram matriz is the matrix G € C™*™ where G;; = (T, %),

where (-, -) is the standard Hermitian inner product. Prove that if G is the Gram matrix of some

collection of vectors Z1,..., T, € C", then rank G < n.
Solution: Set A = [fl e a’c’m}, then G = A* A; hence rank G = rank A. Now, A has n rows, so
rank G = rank A < n. O

(¢) Show that there can be no more than n + 1 equidistant vectors in R™.
(Hint: Without loss of generality, suppose that one of the vectors is 0 and determine the inner

products and norms of the remaining vectors. Then apply part (b).)

Solution: Suppose that Zo,Z1,...,Z, € R" are equidistant and ¥y = 0. Also, without loss of
generality, the common distance is 1. Therefore, for i € [m], we observe that ||Z;||> = ||#;, —Z0|*> = 1.

Thus, for ¢ # j € [m], we have
1=|Z; - Zl* = (& - &5, & — &) = |18])* — 2T, ) + |7
=2 - 2(%;, &)
— <fl,fj> = 1/2.
Let G be the Gram matrix of &1, ..., Z,,, so by above we know that G has 1’s on the diagonal and
1/2’s on the off-diagonal.
By the work done in our proof of Fisher’s theorem, such a G has full rank, so rank G = m. But

then by part (b), we know that m = rank G < n. Thus, m < n, so there were at most n + 1 vectors
to begin with. O

(d) Can you give an upper bound on the size of an equidistant set in C™?

Solution: We can give an upper bound of 2n+ 1. Following the same steps as in part (c), we again
find that ||Z;||? = 1 for all i € [m], but we now find that for i # j € [m],

1= (2, 2;) + (&5, 2,).

We thus see that if G is the Gram matrix of &1, ..., &, then G + GT has 2’s on the diagonal and
1’s on the off-diagonal, and therefore rank(G + GT) = m. Now, rank G = rank(GT) < n, so by
problem (1a) on HW5, we see that m = rank(G + GT) < 2n, so in all, there were at most 2n + 1

vectors to begin with. |

1Such a set forms the vertices of what is called a regular simplex, which is the higher-dimensional analogue of an equilateral
triangle and equilateral tetrahedron.
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[+00 bonus points] Instead of the Euclidean norm, consider the ¢;-norm from HW6. Notice that
{zeé1,..., e, } is equidistant under || - ||; with common distance 2, so we can have sets of 2n vectors

in R™ which are ¢;-equidistant. Can there be any more than 2n such vectors?

Solution: No one knows the answer to this question for n > 6. Currently, the best known upper

bound is C'nlogn for some fixed constant C. O

(6) Consider C™ equipped with the standard Hermitian inner product. Let S < C™ and let {31,...,3;} be

any basis for S (not necessarily orthonormal). Set A = {5’1 e §’k] € Crxk,

(a)

Show that projg ¥ = p'if
1. A*0 = A*p and
2. A% = for some 7 € CF.
(Recall that, in general, projgv =pif p€ S and v —p € S*.)

Solution: Using the hint in the parentheses, projq @ = pif p€ S and 7 — p'€ S+. Certainly p'€ S
if and only if p’ € Col A, i.e. AZ =  has a solution, and ¥ — g € S+ if and only if A*(7—p) = 0, i.e.
AT = A*p. O
Show that projg @ = A(A*A)~tA*¥. Be sure to justify why (A*A)~! exists.

Solution: We first note that A € C*** and rank A = k since dim S = k. Thus, A*A € C*** and
rank(A*A) = rank A = k, so A*A is indeed non-singular.

Now, by part (a), we know that projg @ = p'if A*¥ = A*p and AT = p for some ¥ € C*.

Substitute the second equation into the first to find that projg ¢ = AZ whenever A* A7 = A*¥. Since
A* A is non-singular, we can solve for # = (A*A)~!A*7, and thus projq ¥ = AT = A(A*A)~1A*7.
O

(7) This is an interesting difference between the Euclidean and Hermitian inner products.

(a)

Find a non-zero matrix A € R?*? such that (%, AZ) = 0 for all # € R?. Here (-,-) is the standard

Euclidean inner product.

0

Solution: Let A = T2

1
O] . Observe that AT =

] , 80 (¥, AZX) = x129 — x221 = 0. O

—1
Challenge: Show that the same is impossible for the Hermitian inner product. That is, show that
if A € C™"*™ has the property that (Z, AZ) = 0 for all £ € C", then A = O,,.

(Hint: Show that this implies that (#, Ag) = 0 for all Z, 5 € C™ by considering a linear combination
of # and g. Then apply problem (3b) from HW6.)

Solution: Let A € C be non-zero and Z,§ € C". We see that

0= (AT + 7, AT + 7)) = A&, AT) + X\ (&, Ay) + Ny, AT) + (¢, AY)
M7, Af) + Ay, AT)
= (7, A7) = (\/A)(7, A7),

since A # 0. Suppose for the sake of contradiction that (&, Ag) # 0, so we must also have (¢, AZ) # 0.
Hence, for any non-zero A\ € C, we must have

(#,Ay) A
(7. A7) X’
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implying that A/ is constant for all non-zero A € C. This is, of course, absurd since 1/1 = 1 while
ifi=—1.

Thus, (Z, Ag) = 0 for all Z, ¢ € C", so we find that A = O,, by problem (3b) on HW®6. O



