Justify all answers! I recommend doing these questions out of order and focus first on questions with which you are less comfortable.

(1) Recall that $A \in \mathbb{C}^{n \times n}$ is called *Hermitian* if $A^* = A$. Show that if A is Hermitian, then $\langle \vec{x}, A\vec{x} \rangle \in \mathbb{R}$ for all $\vec{x} \in \mathbb{C}^n$, where $\langle \cdot, \cdot \rangle$ is the standard Hermitian inner product.

Solution: By problem (d) on HW6, we know that $\langle \vec{x}, A\vec{x} \rangle = \langle A\vec{x}, \vec{x} \rangle$ for all $\vec{x} \in \mathbb{C}^n$. On the other hand, $\langle A\vec{x}, \vec{x} \rangle = \overline{\langle \vec{x}, A\vec{x} \rangle}$, so $\langle \vec{x}, A\vec{x} \rangle = \overline{\langle \vec{x}, A\vec{x} \rangle}$, which means that $\langle \vec{x}, A\vec{x} \rangle \in \mathbb{R}$.

(2) Fix $A \in \mathbb{R}^{m \times n}$ and let $\langle \cdot, \cdot \rangle$ be the standard Euclidean inner product. Determine $(\operatorname{Nul} A)^{\perp}$.

Solution: We claim that $(\operatorname{Nul} A)^{\perp} = \operatorname{Row} A = \operatorname{Col}(A^T)$.

We know that $\operatorname{Nul} A = \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0}\}$. In other words, if \vec{a}_i is the *i*th row of A, then we know that $\langle \vec{a}_i, \vec{x} \rangle = 0$ whenever $\vec{x} \in \operatorname{Nul} A$, so $(\operatorname{Nul} A)^{\perp} \supseteq \operatorname{Row} A$. Now, since $A \in \mathbb{R}^{m \times n}$, we know that $\dim \operatorname{Nul} A + \dim (\operatorname{Nul} A)^{\perp} = n = \dim \operatorname{Nul} A + \dim \operatorname{Row} A$, so $\dim \operatorname{Row} A = \dim (\operatorname{Nul} A)^{\perp}$, so since all of these spaces are finite dimensional and $\operatorname{Row} A \subseteq (\operatorname{Nul} A)^{\perp}$, we must have $(\operatorname{Nul} A)^{\perp} = \operatorname{Row} A$. \Box

(3) Fix $A \in \mathbb{C}^{m \times n}$ and let $\langle \cdot, \cdot \rangle$ be the standard Hermitian inner product. Determine $(\operatorname{Nul} A)^{\perp}$.

Solution: We claim that $(\operatorname{Nul} A)^{\perp} = \operatorname{Col}(A^*) = \operatorname{Row}(\overline{A}).$

Since Nul $A = \{\vec{x} \in \mathbb{C}^n : A\vec{x} = \vec{0}\}$, we observe that if \vec{a}_i is a column of A^* , then \vec{a}_i^* is a row of A, so by the same reasoning as problem (2), we see that $\langle \vec{a}_i, \vec{x} \rangle = \vec{a}_i^*\vec{x} = 0$, so $\operatorname{Col}(A^*) \subseteq (\operatorname{Nul} A)^{\perp}$. The full conclusion again follows via the rank–nullity theorem as in the previous problem.

- (4) Let V be a finite-dimensional inner product space and let $\{v_1, \ldots, v_n\}$ be an orthonormal basis.
 - (a) Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis for V. Show that $\sum_{\ell=1}^n |\langle v_\ell, x \rangle|^2 = ||x||^2$ for any $x \in V$.

Solution: We can write $x = \sum_{\ell=1}^{n} \langle v_{\ell}, x \rangle v_{\ell}$, so

$$\|x\|^{2} = \left\langle \sum_{\ell=1}^{n} \langle v_{\ell}, x \rangle v_{\ell}, \sum_{\ell=1}^{n} \langle v_{\ell}, x \rangle v_{\ell} \right\rangle = \sum_{t=1}^{n} \langle v_{t}, x \rangle \left\langle \sum_{\ell=1}^{n} \langle v_{\ell}, x \rangle v_{\ell}, v_{t} \right\rangle$$
$$= \sum_{t,\ell} \langle v_{t}, x \rangle \overline{\langle v_{\ell}, x \rangle} \langle v_{\ell}, v_{t} \rangle = \sum_{\ell=1}^{n} |\langle v_{\ell}, x \rangle|^{2}.$$

(b) Let $\{v_1, \ldots, v_k\}$ be an orthonormal set (not necessarily a basis). Show that $\sum_{\ell=1}^k |\langle v_\ell, x \rangle|^2 \le ||x||^2$ for any $x \in V$. This is known as Bessel's inequality.

Solution: Suppose that dim V = n, so through the Gram–Schmidt algorithm, we can extend $\{v_1, \ldots, v_k\}$ to an orthonormal basis $\{v_1, \ldots, v_n\}$. By part (a) and the fact that $|c|^2 \ge 0$ for any $c \in \mathbb{C}$, we bound

$$||x||^{2} = \sum_{\ell=1}^{n} |\langle v_{\ell}, x \rangle|^{2} \ge \sum_{\ell=1}^{k} |\langle v_{\ell}, x \rangle|^{2}.$$

(5) A collection of vectors $\vec{x}_1, \ldots, \vec{x}_m \in \mathbb{R}^n$ is called *equidistant* if there is some d > 0 for which $\|\vec{x}_i - \vec{x}_j\| = d$ for all $i \neq j$, where $\|\cdot\|$ is the standard Euclidean norm.

(a) Find a collection of n + 1 equidistant vectors in \mathbb{R}^{n} .¹

collection of vectors $\vec{x}_1, \ldots, \vec{x}_m \in \mathbb{C}^n$, then rank $G \leq n$.

(Hint: consider the standard basis and some multiple of the all-ones vector)

Solution: Observe that for any $i \neq j \in [n]$, we have $\|\vec{e_i} - \vec{e_j}\|^2 = 2$. Furthermore, for any $\gamma \in \mathbb{R}$ and $i \in [n]$, we have $\|\vec{e_i} - \gamma \vec{1}\|^2 = (n-1)\gamma^2 + (1-\gamma)^2$. We claim that there is a choice of γ for which $(n-1)\gamma^2 + (1-\gamma)^2 = 2$, which would mean that $\{\vec{e_1}, \ldots, \vec{e_n}, \gamma \vec{1}\}$ is equidistant. We could explicitly solve for such a γ , but that's no fun! Instead, set $f(\gamma) = (n-1)\gamma^2 + (1-\gamma)^2$ and notice that $f \colon \mathbb{R} \to \mathbb{R}$ is a continuous function. Now, f(0) = 1 < 2 and $\lim_{\gamma \to \infty} f(\gamma) = \infty$, so

by the intermediate value theorem, there must be some $\gamma \in \mathbb{R}$ for which $f(\gamma) = 2$. (b) For vectors $\vec{x}_1, \ldots, \vec{x}_m \in \mathbb{C}^n$, the *Gram matrix* is the matrix $G \in \mathbb{C}^{m \times m}$ where $G_{ij} = \langle \vec{x}_i, \vec{x}_j \rangle$, where $\langle \cdot, \cdot \rangle$ is the standard Hermitian inner product. Prove that if G is the Gram matrix of some

Solution: Set $A = \begin{bmatrix} \vec{x}_1 & \cdots & \vec{x}_m \end{bmatrix}$, then $G = A^*A$; hence rank $G = \operatorname{rank} A$. Now, A has n rows, so rank $G = \operatorname{rank} A \leq n$.

(c) Show that there can be no more than n + 1 equidistant vectors in Rⁿ.
(Hint: Without loss of generality, suppose that one of the vectors is 0 and determine the inner products and norms of the remaining vectors. Then apply part (b).)

Solution: Suppose that $\vec{x}_0, \vec{x}_1, \ldots, \vec{x}_m \in \mathbb{R}^n$ are equidistant and $\vec{x}_0 = \vec{0}$. Also, without loss of generality, the common distance is 1. Therefore, for $i \in [m]$, we observe that $\|\vec{x}_i\|^2 = \|\vec{x}_i - \vec{x}_0\|^2 = 1$. Thus, for $i \neq j \in [m]$, we have

$$1 = \|\vec{x}_i - \vec{x}_j\|^2 = \langle \vec{x}_i - \vec{x}_j, \vec{x}_i - \vec{x}_j \rangle = \|\vec{x}_i\|^2 - 2\langle \vec{x}_i, \vec{x}_j \rangle + \|\vec{x}_j\|^2$$
$$= 2 - 2\langle \vec{x}_i, \vec{x}_j \rangle$$
$$\Rightarrow \langle \vec{x}_i, \vec{x}_j \rangle = 1/2.$$

Let G be the Gram matrix of $\vec{x}_1, \ldots, \vec{x}_m$, so by above we know that G has 1's on the diagonal and 1/2's on the off-diagonal.

By the work done in our proof of Fisher's theorem, such a G has full rank, so rank G = m. But then by part (b), we know that $m = \operatorname{rank} G \leq n$. Thus, $m \leq n$, so there were at most n + 1 vectors to begin with.

(d) Can you give an upper bound on the size of an equidistant set in \mathbb{C}^n ?

Solution: We can give an upper bound of 2n + 1. Following the same steps as in part (c), we again find that $\|\vec{x}_i\|^2 = 1$ for all $i \in [m]$, but we now find that for $i \neq j \in [m]$,

$$1 = \langle \vec{x}_i, \vec{x}_j \rangle + \langle \vec{x}_j, \vec{x}_i \rangle.$$

We thus see that if G is the Gram matrix of $\vec{x}_1, \ldots, \vec{x}_m$, then $G + G^T$ has 2's on the diagonal and 1's on the off-diagonal, and therefore rank $(G + G^T) = m$. Now, rank $G = \operatorname{rank}(G^T) \leq n$, so by problem (1a) on HW5, we see that $m = \operatorname{rank}(G + G^T) \leq 2n$, so in all, there were at most 2n + 1 vectors to begin with.

 $^{^{1}}$ Such a set forms the vertices of what is called a regular simplex, which is the higher-dimensional analogue of an equilateral triangle and equilateral tetrahedron.

(e) $[+\infty$ bonus points] Instead of the Euclidean norm, consider the ℓ_1 -norm from HW6. Notice that $\{\pm \vec{e}_1, \ldots, \pm \vec{e}_n\}$ is equidistant under $\|\cdot\|_1$ with common distance 2, so we can have sets of 2n vectors in \mathbb{R}^n which are ℓ_1 -equidistant. Can there be any more than 2n such vectors?

Solution: No one knows the answer to this question for $n \ge 6$. Currently, the best known upper bound is $Cn \log n$ for some fixed constant C.

- (6) Consider \mathbb{C}^n equipped with the standard Hermitian inner product. Let $S \leq \mathbb{C}^n$ and let $\{\vec{s}_1, \ldots, \vec{s}_k\}$ be any basis for S (not necessarily orthonormal). Set $A = \begin{bmatrix} \vec{s}_1 & \cdots & \vec{s}_k \end{bmatrix} \in \mathbb{C}^{n \times k}$.
 - (a) Show that $\operatorname{proj}_S \vec{v} = \vec{p}$ if

 \Longrightarrow

- 1. $A^*\vec{v} = A^*\vec{p}$ and
- 2. $A\vec{x} = \vec{p}$ for some $\vec{x} \in \mathbb{C}^k$.

(Recall that, in general, $\operatorname{proj}_S v = p$ if $p \in S$ and $v - p \in S^{\perp}$.)

Solution: Using the hint in the parentheses, $\operatorname{proj}_S \vec{v} = \vec{p}$ if $\vec{p} \in S$ and $\vec{v} - \vec{p} \in S^{\perp}$. Certainly $\vec{p} \in S$ if and only if $\vec{p} \in \operatorname{Col} A$, i.e. $A\vec{x} = \vec{p}$ has a solution, and $\vec{v} - \vec{p} \in S^{\perp}$ if and only if $A^*(\vec{v} - \vec{p}) = \vec{0}$, i.e. $A^*\vec{v} = A^*\vec{p}$.

(b) Show that $\operatorname{proj}_{S} \vec{v} = A(A^*A)^{-1}A^*\vec{v}$. Be sure to justify why $(A^*A)^{-1}$ exists.

Solution: We first note that $A \in \mathbb{C}^{n \times k}$ and rank A = k since dim S = k. Thus, $A^*A \in \mathbb{C}^{k \times k}$ and rank $(A^*A) = \operatorname{rank} A = k$, so A^*A is indeed non-singular.

Now, by part (a), we know that $\operatorname{proj}_S \vec{v} = \vec{p}$ if $A^*\vec{v} = A^*\vec{p}$ and $A\vec{x} = \vec{p}$ for some $\vec{x} \in \mathbb{C}^k$.

Substitute the second equation into the first to find that $\operatorname{proj}_{S} \vec{v} = A\vec{x}$ whenever $A^*A\vec{x} = A^*\vec{v}$. Since A^*A is non-singular, we can solve for $\vec{x} = (A^*A)^{-1}A^*\vec{v}$, and thus $\operatorname{proj}_{S} \vec{v} = A\vec{x} = A(A^*A)^{-1}A^*\vec{v}$. \Box

- (7) This is an interesting difference between the Euclidean and Hermitian inner products.
 - (a) Find a non-zero matrix $A \in \mathbb{R}^{2 \times 2}$ such that $\langle \vec{x}, A\vec{x} \rangle = 0$ for all $\vec{x} \in \mathbb{R}^2$. Here $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product.

Solution: Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. Observe that $A\vec{x} = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}$, so $\langle \vec{x}, A\vec{x} \rangle = x_1x_2 - x_2x_1 = 0$.

(b) **Challenge:** Show that the same is impossible for the Hermitian inner product. That is, show that if $A \in \mathbb{C}^{n \times n}$ has the property that $\langle \vec{x}, A\vec{x} \rangle = 0$ for all $\vec{x} \in \mathbb{C}^n$, then $A = O_n$.

(Hint: Show that this implies that $\langle \vec{x}, A\vec{y} \rangle = 0$ for all $\vec{x}, \vec{y} \in \mathbb{C}^n$ by considering a linear combination of \vec{x} and \vec{y} . Then apply problem (3b) from HW6.)

Solution: Let $\lambda \in \mathbb{C}$ be non-zero and $\vec{x}, \vec{y} \in \mathbb{C}^n$. We see that

$$\begin{split} 0 &= \langle \lambda \vec{x} + \vec{y}, A(\lambda \vec{x} + \vec{y}) \rangle = \bar{\lambda} \lambda \langle \vec{x}, A \vec{x} \rangle + \bar{\lambda} \langle \vec{x}, A \vec{y} \rangle + \lambda \langle \vec{y}, A \vec{x} \rangle + \langle \vec{y}, A \vec{y} \rangle \\ &= \bar{\lambda} \langle \vec{x}, A \vec{y} \rangle + \lambda \langle \vec{y}, A \vec{x} \rangle \\ \cdot &\langle \vec{x}, A \vec{y} \rangle = (\lambda / \bar{\lambda}) \langle \vec{y}, A \vec{x} \rangle, \end{split}$$

since $\lambda \neq 0$. Suppose for the sake of contradiction that $\langle \vec{x}, A\vec{y} \rangle \neq 0$, so we must also have $\langle \vec{y}, A\vec{x} \rangle \neq 0$. Hence, for *any* non-zero $\lambda \in \mathbb{C}$, we must have

$$\frac{\langle \vec{x}, A\vec{y} \rangle}{\langle \vec{y}, A\vec{x} \rangle} = \frac{\lambda}{\bar{\lambda}},$$

implying that $\lambda/\bar{\lambda}$ is constant for all non-zero $\lambda \in \mathbb{C}$. This is, of course, absurd since $1/\bar{1} = 1$ while $i/\bar{i} = -1$.

Thus, $\langle \vec{x}, A\vec{y} \rangle = 0$ for all $\vec{x}, \vec{y} \in \mathbb{C}^n$, so we find that $A = O_n$ by problem (3b) on HW6.