Here we use Zorn's Lemma to prove that if V is any vector space over a field \mathbb{F}, then V has a basis. We've shown in class that any maximal linearly independent set is a basis, so we just need to show that one of these exists. Lucky for us, Zorn's Lemma is perfect for finding maximal elements!

Proof. Let P be the poset whose elements are linearly independent subsets of P where $X \preceq Y$ whenever $X \subseteq Y$. Notice that P is non-empty since \varnothing is always linearly independent.

Let \mathcal{C} be a chain in P, we need to show that \mathcal{C} has an upper bound in P. Set $C^{*}=\bigcup_{X \in \mathcal{C}} X$. Certainly $X \subseteq C^{*}$ for every $X \in \mathcal{C}$, so C^{*} would be an upper bound for \mathcal{C} if $C^{*} \in P$; that is, if C^{*} is linearly independent.

To show that this is the case, consider a linear combination $c_{1} x_{1}+\cdots+c_{n} x_{n}=0$ where $x_{1}, \ldots, x_{n} \in C^{*}$ and $c_{1}, \ldots, c_{n} \in \mathbb{F}$. Since \mathcal{C} is a chain and there are only finitely many x_{i} 's, we can find some $X^{*} \in \mathcal{C}$ for which $x_{1}, \ldots, x_{n} \in X^{*}$. Now, X^{*} is linearly independent, so since $c_{1} x_{1}+\cdots+c_{n} x_{n}=0$, we know that $c_{1}=\cdots=c_{n}=0$. Therefore $C^{*} \in P$, so C^{*} is an upper bound for the chain \mathcal{C}.

We now apply Zorn's Lemma to P to get the existence of a maximal element X^{*} of P. By definition, X^{*} is a maximal linearly independent subset of V, so X^{*} is a basis for V.

