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Preface

Markov chains are the simplest mathematical models for random phenom­
ena evolving in time. Their simple structure makes it possible to say a great
deal about their behaviour. At the same time, the class of Markov chains
is rich enough to serve in many applications. This makes Markov chains
the first and most important examples of random processes. Indeed, the
whole of the mathematical study of random processes can be regarded as a
generalization in one way or another of the theory of Markov chains.

This book is an account of the elementary theory of Markov chains,
with applications. It was conceived as a text for advanced undergraduates
or master's level students, and is developed from a course taught to un­
dergraduates for several years. There are no strict prerequisites but it is
envisaged that the reader will have taken a course in elementary probability.
In particular, measure theory is not a prerequisite.

The first half of the book is based on lecture notes for the undergradu­
ate course. Illustrative examples introduce many of the key ideas. Careful
proofs are given throughout. There is a selection of exercises, which forms
the basis of classwork done by the students, and which has been tested
over several years. Chapter 1 deals with the theory of discrete-time Markov
chains, and is the basis of all that follows. You must begin here. The
material is quite straightforward and the ideas introduced permeate the
whole book. The basic pattern of Chapter 1 is repeated in Chapter 3 for
continuous-time chains, making it easy to follow the development byanal­
ogy. In between, Chapter 2 explains how to set up the theory of continuous-
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time chains, beginning with simple examples such as the Poisson process
and chains with finite state space.

The second half of the book comprises three independent chapters in­
tended to complement the first half. In some sections the style is a lit­
tle more demanding. Chapter 4 introduces, in the context of elementary
Markov chains, some of the ideas crucial to the advanced study of Markov
processes, such as martingales, potentials, electrical networks and Brownian
motion. Chapter 5 is devoted to applications, for example to population
growth, mathematical genetics, queues and networks of queues, Markov de­
cision processes and Monte Carlo simulation. Chapter 6 is an appendix to
the main text, where we explain some of the basic notions of probability
and measure used in the rest of the book and give careful proofs of the few
points where measure theory is really needed.

The following paragraph is directed primarily at an instructor and as­
sumes some familiarity with the subject. Overall, the book is more focused
on the Markovian context than most other books dealing with the elemen­
tary theory of stochastic processes. I believe that this restriction in scope
is desirable for the greater coherence and depth it allows. The treatment
of discrete-time chains in Chapter 1 includes the calculation of transition
probabilities, hitting probabilities, expected hitting times and invariant dis­
tributions. Also treated are recurrence and transience, convergence to equi­
librium, reversibility, and the ergodic theorem for long-run averages. All
the results are proved, exploiting to the full the probabilistic viewpoint.
For example, we use excursions and the strong Markov property to obtain
conditions for recurrence and transience, and convergence to equilibrium is
proved by the coupling method. In Chapters 2 and 3 we proceed via the
jump chain/holding time construction to treat all right-continuous, mini­
mal continuous-time chains, and establish analogues of all the main results
obtained for discrete time. No conditions of uniformly bounded rates are
needed. The student has the option to take Chapter 3 first, to study the
properties of continuous-time chains before the technically more demand­
ing construction. We have left measure theory in the background, but
the proofs are intended to be rigorous, or very easily made rigorous, when
considered in measure-theoretic terms. Some further details are given in
Chapter 6.

It is a pleasure to acknowledge the work of colleagues from which I have
benefitted in preparing this book. The course on which it is based has
evolved over many years and under many hands - I inherited parts of it
from Martin Barlow and Chris Rogers. In recent years it has been given
by Doug Kennedy and Colin Sparrow. Richard Gibbens, Geoffrey Grim-
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mett, Frank Kelly and Gareth Roberts gave expert advice at various stages.
Meena Lakshmanan, Violet Lo and David Rose pointed out many typos ,and
ambiguities. Brian Ripley and David Williams made constructive sugges­
tions for improvement of an early version.

I am especially grateful to David Thanah at Cambridge University Press
for his suggestion to write the book and for his continuing support, and to
Sarah Shea-Simonds who typeset the whole book with efficiency, precision
and good humour.

Cambridge, 1996 James Norris



Introduction

This book is about a certain sort of random process. The characteristic
property of this sort of process is that it retains no memory of where it has
been in the past. This means that only the current state of the process can
influence where it goes next. Such a process is called a Markov process. We
shall be concerned exclusively with the case where the process can assume
only a finite or countable set of states, when it is usual to refer it as a
Markov chain.

Examples of Markov chains abound, as you will see throughout the book.
What makes them important is that not only do Markov chains model
many phenomena of interest, but also the lack of memory property makes
it possible to predict how a Markov chain may behave, and to compute
probabilities and expected values which quantify that behaviour. In this
book we shall present general techniques for the analysis of Markov chains,
together with many examples and applications. In this introduction we
shall discuss a few very simple examples and preview some of the questions
which the general theory will answer.

We shall consider chains both in discrete time

n E Z+ = {O, 1, 2, ... }

and continuous time
t E jR+ = [0, (0).

The letters n, m, k will always denote integers, whereas t and s will refer
to real numbers. Thus we write (Xn)n~O for a discrete-time process and
(Xt)t~O for a continuous-time process.
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Markov chains are often best described by diagrams, of which we now
give some simple examples:

(i) (Discrete time)

1

3
1
3

2

You move from state 1 to state 2 with probability 1. From state 3 you
move either to 1 or to 2 with equal probability 1/2, and from 2 you jump
to 3 with probability 1/3, otherwise stay at 2. We might have drawn a loop
from 2 to itself with label 2/3. But since the total probability on jumping
from 2 must equal 1, this does not convey any more information and we
prefer to leave the loops out.

(ii) (Continuous time)

Ao••---~.~-- ...... 1

When in state 0 you wait for a random time with exponential distribution
of parameter A E (0, 00), then jump to 1. Thus the density function of the
waiting time T is given by

for t ~ o.

We write T rv E(A) for short.

(iii) (Continuous time)

A
• •o 1

A
•

2 3 4

Here, when you get to 1 you do not stop but after another independent
exponential time of parameter A jump to 2, and so on. The resulting process
is called the Poisson process of rate A.



3

Introduction

1

4
2

xv

(iv) (Continuous time)

In state 3 you take two independent exponential times T1 rv E(2) and
T2 rv E (4); if T1 is the smaller you go to 1 after time T1 , and if T2 is the
smaller you go to 2 after time T2 . The rules for states 1 and 2 are as given
in examples (ii) and (iii). It is a simple matter to show that the time spent
in 3 is exponential of parameter 2 + 4 = 6, and that the probability of
jumping from 3 to 1 is 2/(2 + 4) = 1/3. The details are given later.

(v) (Discrete time)

3 6

2

o

5

We use this example to anticipate some of the ideas discussed in detail
in Chapter 1. The states may be partitioned into communicating classes,
namely {O}, {I, 2, 3} and {4, 5, 6}. Two of these classes are closed, meaning
that you cannot escape. The closed classes here are recurrent, meaning
that you return again and again to every state. The class {O} is transient.
The class {4, 5, 6} is periodic, but {I, 2, 3} is not. We shall show how to
establish the following facts by solving some simple linear/ equations. You
might like to try from first principles.

(a) Starting from 0, the probability of hitting 6 is 1/4.

(b) Starting from 1, the probability of hitting 3 is 1.

(c) Starting from 1, it takes on average three steps to hit 3.

(d) Starting from 1, the long-run proportion of time spent in 2 is 3/8.
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Let us write pij for the probability starting from i of being in state j after
n steps. Then we have:

(e) lim POI = 9/32;
n---+oo

(f) P04 does not converge as n ~ 00;

(g) lim pg4 = 1/124.
n---+oo



1

Discrete-time Markov chains

This chapter is the foundation for all that follows. Discrete-time Markov
chains are defined and their behaviour is investigated. For better orien­
tation we now list the key theorems: these are Theorems 1.3.2 and 1.3.5
on hitting times, Theorem 1.4.2 on the strong Markov property, Theorem
1.5.3 characterizing recurrence and transience, Theorem 1.7.7 on invariant
distributions and positive recurrence. Theorem 1.8.3 on convergence to
equilibrium, Theorem 1.9.3 on reversibility, and Theorem 1.10.2 on long­
run averages. Once you understand these you will understand the basic
theory. Part of that understanding will come from familiarity with exam­
ples, so a large number are worked out in the text. Exercises at the end of
each section are an important part of the exposition.

1.1 Definition and basic properties

Let I be a countable set. Each i E I is called a state and I is called the
state-space. We say that A = (Ai: i E I) is a measure on I if 0 ~ Ai < 00

for all i E I. If in addition the total mass EiEI Ai equals 1, then we call
A a distribution. We work'throughout with a probability space (0, F, lP).
Recall that a random variable X with values in I is a function X : 0 --+ I.
Suppose we set

Ai = IF(X = i) = IF({w : X(w) = i}).
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Then A defines a distribution, the distribution of X. We think of X as
modelling a random state which takes the value i with probability Ai. There
is a brief review of some basic facts about countable sets and probability
spaces in Chapter 6.

We say that a matrix P == (Pij : i, j E I) is stochastic if every row
(Pij : j E I) is a distribution. There is a one-to-one correspondence between
stochastic matrices P and the sort of diagrams described in the Introduc­
tion. Here are two examples:

(I-a
1 ~ /3)P-- (3

1

p= ( ~
1

1~2 )1/2
1/2 0 1/2

3 1 2
2

We shall now formalize the rules for a Markov chain by a definition in
terms of the corresponding matrix P. We say that (Xn)n~O is a Markov
chain wit'h initial distribution A and transition matrix P if

(i) X o has distribution A;
(ii) for n ~ 0, conditional on X n == i, X n +1 has distribution (Pij : j E I)

and is independent of X o,.·· ,Xn - 1 .

More explicitly, these conditions state that, for n 2: 0 and io, ... ,in+l E I,

(i) P (X0 == io) == Aio;

(ii) P(Xn+1 == in+1 IX o == io, ... ,Xn == in) == Pin i n +1 •

We say that (Xn)n~O is Markov (A, P) for short. If (Xn)O~n~N is a finite
sequence of random variables satisfying (i) and (ii) for n == 0, ... ,N - 1,
then we again say (Xn)O~n~N is Markov (A, P).

It is in terms of properties (i) and (ii) that most real-world examples are
seen to be Markov chains. But mathematically the. following result appears
to give a more comprehensive description, and it is the key to some later
calculations.

Theorem 1.1.1. A discrete-time random process (Xn)O<n<N is
Markov(A, P) if and only if for all io, ... ,iN E I
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Proof. Suppose (Xn)O~n~N is Markov(A, P), then

P(Xo = iO,XI = i l , ... ,XN = iN)

= P(Xo = iO)P(XI = il I Xo = io)

... lP(XN = iN I Xo = io,· .. ,XN- I = iN-I)

3

On the other hand, if (1.1) holds for N, then by summing both sides over
iN E I and using EjEI Pij = 1 we see that (1.1) holds for N - 1 and, by
induction

for all n = 0,1, ... ,N. In particular, P(Xo = io) = Aio and, for n
0,1, ... ,N - 1,

P(Xn+1 = in+1 I Xo = io, ... ,Xn = in)

= P(Xo = io, ... ,Xn = in, X n+1 = in+I)/P(XO= io,· .. ,Xn = in)

So (Xn)O~n~N is Markov(A, P). D

The next result reinforces the idea that Markov chains have no memory.
We write 8i = (8ij : j E I) for the unit mass at i, where

{
I ifi=j

8ij = ° otherwise.

Theorem 1.1.2 (Markov property). Let (Xn)n~O be Markov(A, P).
Then, conditional on X m = i, (Xm+n)n~O is Markov(8i , P) and is indepen­
dent of the random variables X o, . .. ,Xm .

Proof. We have to show that for any event A determined by Xo~; ... ,Xm
we have

lP({Xm = im,··· ,Xm+n = im+n} n A I X m = i)

= 8iirnPirnirn+l .. ·Pirn+n-lirn+nlP(A I X m = i) (1.2)

then the result follows by Theorem 1.1.1. First consider the case of elemen­
taryevents

A = {Xo = io, ... ,Xm = i m }.
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In that case we have to show

P(Xo = io,· .. ,Xm+n = im+n and i = im)/P(Xm = i)

= biirnPirn irn+l Pirn+n-l i rn+n

X lP(Xo = io, ,Xm = im and i = im)/lP(Xm = i)

which is true by Theorem 1.1.1. In general, any event A determined by
X o, ... ,Xm may be written as a countable disjoint union of elementary
events

00

A= U Ak.
k=l

Then the desired identity (1.2) for A follows by summing up the corre­
sponding identities for A k . D

The remainder of this section addresses the following problem: what is
the probability that after n steps our Markov chain is in a given state~ First
we shall see how the problem reduces to calculating entries in the nth power
of the transition matrix. Then we shall look at some examples where this
may be done explicitly.

We regard distributions and measures A as row vectors whose compo­
nents are indexed by I, just as P is a matrix whose entries are indexed by
I x I. When I is finite we will often label the states 1,2, ... ,N; then A
will be an N-vector and P an N x N-matrix. For these objects, matrix
multiplication is a familiar operation. We extend matrix multiplication to
the general case in the obvious way, defining a new measure AP and a new
matrix p 2 by

(AP)j = L AiPij,
iEI

(p2)ik = LPijPjk.
jEI

We define pn similarly for any n. We agree that pO is the identity matrix
I, where (I)ij = 8ij . The context will make it clear when I refers to the

state-space and when to the identity matrix. We write p~j) = (pn)ij for
the (i, j) entry in pn.

In the case where Ai > °we shall write Pi(A) for the conditional prob­
ability P(A I X o = i). By the Markov property at time m = 0, under lPi,
(Xn)n~O is Markov(8i , P). So the behaviour of (Xn)n~O under lPi does not
depend on A.

Theorem 1.1.3. Let (Xn)n~O be Markov(A, P). Then, for all n, m ~ 0,

(i) P(Xn = j) = (Apn)j;

(ii) lP\(Xn = j) = JP(Xn +m = j IX m = i) = p~j) ·
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Proof. (i) By Theorem 1.1.1

P(Xn = j) = L ·.. L P(Xo = io,··· ,Xn- I = in-I, X n = j)
ioEI in-lEI

= L ... L AioPioil" ·Pin-Ii = (Apnk
ioEI in-lEI

5

(ii) By the Markov property, conditional on X m = i, (Xm+n)n~O is Markov
(8i , P), so we just take A = 8i in (i). D

In light of this theorem we call p~j) the n-step transition probability from i

to j. The following examples give some methods for calculating p~j).

Example 1.1.4

The most general two-state chain has transition matrix of the form

(
I-a

p = {3

and is represented by the following diagram:

{3

We exploit the relation p n+I = pnP to write

(n+I) _ (n){3 + (n) (1 _ )
PII - PI2 PII a .

We also know that pi~) + pi~) = IP\ (Xn = 1 or 2) = 1, so by eliminating

pi~) we get a recurrence relation for pi~):

(n+I) - (1 - - (3) (n) + {3
PII - a PII ,

This has a unique solution (see Section 1.11):

(n) {_(3_ + _a_(l_ a - (3)n for a + {3 > 0
PII = a + {3 a + {3

1 for a + {3 = O.
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Example 1.1.5 (Virus mutation)

Suppose a virus can exist in N different strains and in each generation
either stays the same, or with probability a mutates to another strain,
which is chosen at random. What is the probability that the strain in the
nth generation is the same as that in the Oth?

We could model this process as an N-state chain, with N x N transition
matrix P given by

Pii = 1 - a, Pij = a / (N - 1) for i =I j.

Then the answer we want would be found by computing pi~). In fact, in
this example there is a much simpler approach, which relies on exploiting
the symmetry present in the mutation rules.

At any time a transition is made from the initial state to another with
probability a, and a transition from another state to the initial state with
probability a/(N - 1). Thus we have a two-state chain with diagram

a/(N - 1)

and by putting (3 = a/(N - 1) in Example 1.1.4 we find that the desired
probability is

-!. + (1- -!.) (1- ~)n
N N N-1·

Beware that in examples having less symmetry, this sort of lumping together
of states may not produce a Markov chain.

Example 1.1.6

Consider the three-state chain with diagram

1

3 1
2

2
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and transition matrix

7

p= (~ ~ I)·
The problem is to find a general formula for pi~).

First we compute the eigenvalues of P by writing down its characteristic
equation

o= det (x - P) = x(x - ~)2 - ~ = ~(x - 1)(4x2 + 1).

The eigenvalues are 1, i/2, -i/2 and from this we deduce that pi~) has the
form

( .)n (")n(n) ~ ~

Pu = a + b 2 + c - 2

for some constants a, band c. (The justification comes from linear algebra:
having distinct eigenvalues, P is diagonalizable, that is, for some invertible
matrix U we have

~ ) U- 1

-i/2

and hence

p n
= U (00

1
(i/~t ~) U-

1

o (-i/2)n

which forces pi~) to have the form claimed.) The answer we want is real
and

(±~)n = (~)ne±in~/2= (~)n (cosn
2

7r
±isin

n
2

7r
)

so it makes sense to rewrite pi~) in the form

for constants Q, (3 aDd~. The first few values of pi~) are easy to write
down, so we get equations to solve for Q, (3 and ~:

1 = pi~) = Q + (3

o= pii) = Q + ~l'

O- p(2) - r\J - 1(3- 11 - L.(, 4
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SO Q: = 1/5, (3 = 4/5, ~ = -2/5 and

More generally, the following method may in principle be used to find a
formula for p~;) for any M-state chain and any states i and j.

(i) Compute the eigenvalues AI, ... ,AM of P by solving the character­
istic equation.

(ii) If the eigenvalues are distinct then p~;) has the form

(n) _ \ n \ n
Pij - alAI + ... + aMAM

for some constants al, . .. ,aM (depending on i and j). If an eigen­
value A is repeated (once, say) then the general form includes the
term (an+b)An

.

(iii) As roots of a polynomial with real coefficients, complex eigenvalues
will come in conjugate pairs and these are best written using sine
and cosine, as in the example.

Exercises

1.1.1 Let B I , B 2 , • •• be disjoint events with U~l Bn = O. Show that if A
is another event and P(AIBn ) = P for all n then P(A) = p.

Deduce that if X and Yare discrete random variables then the following
are equivalent:

(a) X and Yare independent;

(b) the conditional distribution of X given Y = y is independent of y.

1.1.2 Suppose that (Xn)n~O is Markov (A, P). If Yn = Xkn, show that
(Yn)n~O is Markov (A, p k).

1.1.3 Let X o be a random variable with values in a countable set I. Let
YI , Y2 , . .. be a sequence of independent random variables, uniformly dis­
tributed on [0, 1]. Suppose we are given a function

G : I x [0, 1] --+ I

and define inductively

Show that (Xn)n~O is a Markov chain and express its transition matrix P
in terms of G. Can all Markov chains be realized in this way? How would
you simulate a Markov chain using a computer?
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Suppose now that Zo, Z1, . .. are independent, identically distributed
random variables such that Zi = 1 with probability p and Zi = 0 with
probability 1 - p. Set So = 0, Sn = Z1 + ... + Zn. In each of the following
cases determine whether (Xn)n~O is a Markov chain:

(a) X n = Zn, (b) X n = Sn,
(c) X n = So + ... + Sn, (d)Xn = (Sn, So + ... + Sn).

In the cases where (Xn)n~O is a Markov chain find its state-space and
transition matrix, and in the cases where it is not a Markov chain give an
example where P(Xn+1 = ilXn = j, X n- 1 = k) is not independent of k.

1.1.4 A flea hops about at random on the vertices of a triangle, with all
jumps equally likely. Find the probability that after n hops the flea is back
where it started.

A second flea also hops about on the vertices of a triangle, but this flea is
twice as likely to jump clockwise as anticlockwise. What is the probability
that after n hops this second flea is back where it started? [Recall that
e±i7r/6 = V3/2 ± i/2.]

1.1.5 A die is 'fixed' so that each time it is rolled the score cannot be the
same as the preceding score, all other scores having probability 1/5. If the
first score fS 6, what is the probability p that the nth score is 6? What is
the probability that the nth score is I?

Suppose now that a new die is produced which cannot score one greater
(mod 6) than the preceding score, all other scores having equal probability.
By considering the relationship between the two dice find the value of p for
the new die.

1.1.6 An octopus is trained to choose object A from a pair of objects A, B
by being given repeated trials in which it is shown both and is rewarded
with food if it chooses A. The octopus may be in one of three states of mind:
in state 1 it cannot remember which object is rewarded and is equally likely
to choose either; in state 2 it remembers and chooses A but may forget
again; in state 3 it remembers and chooses A and never forgets. After each
tr·ial it may change its state of mind according to the transition matrix

State 1 ~ ~ 0

State 2 ~ l2 1
5
2

State 3 0 0 1.

It is in state 1 before the first trial. What is the probablity that it is
in state 1 just before the (n+l)th trial? What is the probability Pn+1 (A)
that it chooses A on the (n + 1)th trial ?
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Someone suggests that the record of successive choices (a sequence of As
and Bs) might arise from a two-state Markov chain with constant transition
probabilities. Discuss, with reference to the value of Pn+1 (A) that you have
found, whether this is possible.

1.1.7 Let (Xn)n~O be a Markov chain on {1,2,3} with transition matrix

1 0 )
2/3 1/3 .
1- P 0

Calculate P(Xn = 11Xo = 1) in each of the following cases: (a) p = 1/16,
(b) p = 1/6, (c) p = 1/12.

1.2 Class structure

It is sometimes possible to break a Markov chain into smaller pieces, each
of which is relatively easy to understand, and which together give an un­
derstanding of the whole. This is done by identifying the communicating
classes of the chain.

We say that i leads to j and write i ~ j if

Pi(Xn = j for some n ~ 0) > o.

We say i communicates with j and write i ~ j if both i ~ j and j ~ i.

Theorem 1.2.1. For distinct states i and j the following are equivalent:

(i) i ~ j;

(ii) P i oi l P i li2 ... Pin-lin > 0 for some states io,il, ... ,in with io = i and
in = j;

(iii) p~j) > 0 for some n ~ O.

Proof. Observe that

00

p~j) ::; lPi(Xn = j for some n ~ 0) ::; L p~j)
n=O

which proves the equivalence of (i) and (iii). Also

p~j) = L Pii1P i li2 .. ·Pin-d

il ,... ,in-l

so that (ii) and (iii) are equivalent. 0



1.3 Hitting times and absorption probabilities 11

It is clear from (ii) that i ~ j and j ~ k imply i ~ k. Also i ~ i for
any state i. So ~ satisfies the conditions for an equivalence relation on I,
and thus partitions I into communicating classes. We say that a class C is
closed if

i E C, i ~ j imply j E C.

Thus a closed class is one from which there is no escape. A state i is
absorbing if {i} is a closed class. The smaller pieces referred to above are
these communicating classes. A chain or transition matrix P where I is a
single class is called irreducible.

As the following example makes clear, when one can draw the diagram,
the class structure of a chain is very easy to find.

Example 1.2.2

Find the communicating classes associated to the stochastic matrix

1 1 0 0 0 02 2
0 0 1 0 0 0
1 0 0 1 1 0

P= 3 3 3
0 0 0 1 1 02 2
0 0 0 0 0 1
0 0 0 0 1 0

The solution is obvious from the diagram

1 4

2 6

the classes being {1,2,3}, {4} and {5,6}, with only {5,6} being closed.

Exercises

1.2.1 Identify the communicating classes of the following transition matrix:

1 0 0 0 1
2 2
0 1 0 1 02 2

P= 0 0 1 0 0
0 1 1 1 1

:4 :4 :4 :4
1 0 0 0 1
2 2

Which classes are closed?
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1.2.2 Show that every transition matrix on a finite state-space has at least
one closed communicating class. Find an example of a transition matrix
with no closed communicating class.

1.3 Hitting times and absorption probabilities

Let (Xn)n>O be a Markov chain with transition matrix P. The hitting time
of a subset A of I is the random variable H A : n ~ {O,1,2, ... } U {oo}
given by

HA(w) = inf{n ~ 0 : Xn(w) E A}

where we agree that the infimum of the empty set 0 is 00. The probability
starting from i that (Xn)n~O ever hits A is then

When A is a closed class, hf is called the absorption probability. The mean
time taken for (Xn)n~O to reach A is given by

kt = lEi(HA
) = 2: nJP>(HA = n) + ooJP>(HA = (0).

n<oo

We shall often write less formally

Remarkably, these quantities can be calculated explicitly by means of cer­
tain linear equations associated with the transition matrix P. Before we
give the general theory, here is a simple example.

Example 1.3.1

Consider the chain with the following diagram:

1 1 1
2 2 2•• E • 41( • ~ •

1 2 1 3 4
2

Starting from 2, what is the probability of absorption in 4? How long does
it take until the chain is absorbed in 1 or 4?

Introduce
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Clearly, hI = 0, h4 = 1 and kl = k4 = o. Suppose now that we start at 2,
and consider the situation after making one step. With probability 1/2 we
jump to 1 and with probability 1/2 we jump to 3. So

The 1 appears in the second formula because we count the time for the first
step. Similarly,

Hence

h2 = ~ h3 = ~ ( ~ h2 + ~),

k2 = 1 + ~k3 = 1 + ~(1 + ~k2).

So, starting from 2, the probability of hitting 4 is 1/3 and the mean time to
absorption is 2. Note that in writing down the first equations for h2 and k2

we made implicit use of the Markov property, in assuming that the chain
begins afresh from its new position after the first jump. Here is a general
result for hitting probabilities.

Theorem 1.3.2. The vector of hitting probabilities hA = (hf : i E I) is
the minimal non-negative solution to the system of linear equations

{
hf = 1 for i E A

hf = EjEI Pij h1 for i fj. A.
(1.3)

(Minimality means that if x = (Xi: i E I) is another solution with Xi ~ 0
for all i, then Xi ~ hi for all i.)

Proof. First we show that hA satisfies (1.3). If X o = i E A, then H A = 0,
so hf = 1. If X o = i fj. A, then H A ~ 1, so by the Markov property

and

hf = lP\(HA < 00) = LJPi(HA < oo,XI = j)
jEI

= LJPi(HA < 00 IXl = j)JPi(XI = j) = LPijhf.
jEI jEI
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Suppose now that X = (Xi: i E I) is any solution to (1.3). Then hf = Xi = 1
for i E A. Suppose i ¢ A, then

Xi = '2:PijXj = '2:Pij + '2:PijXj.
jEI jEA j~A

Substitute for Xj to obtain

Xi = LPij + LPij(LPjk + LPjkXk)
jEA j~A kEA k~A

= JPli(X1 E A) + JPli(X1 ¢ A, X2 E A) + '2: '2: PijPjkXk·
j~A k~A

By repeated substitution for X in the final term we obtain after n steps

Xi = JP>i(XI E A) + ... + JP>i(XI fj. A, ... ,Xn - I fj. A, X n E A)

+ L ... L PiiIPjli2 · · · Pjn-lin Xjn'
jl~A jn~A

Now if X is non-negative, so is the last term on the right, and the remaining
terms sum to JP>i(H A ~ n). So Xi ~ JP>i(H A ~ n) for all n and then

Xi ~ lim JP>i(H A ~ n) = JP>i(H A < 00) = hi.
n--+-oo

Example 1.3.1 (continued)

The system of linear equations (1.3) for h = h{4} are given here by

h4 = 1,

h2 = ~hl + ~h3, h3 = ~h2 + ~h4

so that

and

D

The value of hI is not determined by the system (1.3), but the minimality
condition now makes us take hI = 0, so we recover h2 = 1/3 as before. Of
course, the extra boundary condition hI = 0 was obvious from the beginning
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so we built it into our system of equations and did not have to worry about
minimal non-negative solutions.

In cases where the state-space is infinite it may not be possible to write
down a corresponding extra boundary condition. Then, as we shall see in
the next examples, the minimality condition is essential.

Example 1.3.3 (Gamblers' ruin)

Consider the Markov chain with diagram

•o
q p
I( • ..

1

q p q p
I( ... 1( ••

i i + 1

where 0 < P = 1 - q < 1. The transition probabilities are

Poo = 1,

Pi,i-l = q, Pi,i+l = P for i = 1,2, ....

Imagine that you enter a casino with a fortune of £i and gamble, £1 at a
time, with probability P of doubling your stake and probability q of losing
it. The resources of the casino are regarded as infinite, so there is no upper
limit to your fortune. But what is the probability that you leave broke?

Set hi = IPi(hit 0), then h is the minimal non-negative solution to

ho = 1,

hi = phi+1 + qhi- 1 , for i = 1,2, ....

If p =I q this recurrence relation has a general solution

hi = A + B (~) i .

(See Section 1.11.) If P < q, which is the case in most successful casinos,
then the restriction 0 ~ hi ~ 1 forces B = 0, so hi = 1 for all i. If p > q,
then since ho = 1 we get a family of solutions

for a non-negative solution we must have A ~ 0, so the minimal non­
negative solution is hi = (q / p) i. Finally, if p = q the recurrence relation
has a general solution

hi = A+ Bi
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and again the restriction 0 ~ hi ~ 1 forces B = 0, so hi = 1 for all i.
Thus, even if you find a fair casino, you are certain to end up broke. This
apparent paradox is called gamblers' ruin.

Example 1.3.4 (Birth-and-death chain)

Consider the Markov chain with diagram

ql PI qi Pi qi+1 Pi+1...---.t(-......~......- - - - - ---..t(~---•.-......t(I---..-••-- - - - - -
o 1 i i+l

where, for i = 1,2, ... , we have 0 < Pi = 1 - qi < 1. As in the preceding
example, 0 is an absorbing state and we wish to calculate the absorption
probability starting from i. But here we allow Pi and qi to depend on i.

Such a chain may serve as a model for the size of a population, recorded
each time it changes, Pi being the probability that we get a birth before
a death in a population of size i. Then hi = IPi(hit 0) is the extinction
probability starting from i.

We write down the usual system of equations

ho = 1,

hi = Pihi+1 + qihi-I, for i = 1,2, ....

This recurrence relation has variable coefficients so the usual technique fails.
But consider Ui = h i- I - hi, then PiUi+1 = qiUi, so

where the final equality defines ~i. Then

UI + ... + Ui = ho - hi

so

where A = UI and ~o = 1. At this point A remains to be determined. In
the case L::o ~i = 00, the restriction 0 ~ hi ~ 1 forces A = 0 and hi = 1
for all i. But if L::o ~i < 00 then we can take A > 0 so long as

l-A(~o+ ... +~i-I)~O for all i.
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(1.4)

Thus the minimal non-negative solution occurs when A = (E:o Ii) -1 and
then

In this case, for i = 1,2, ... , we have hi < 1, so the population survives
with positive probability.

Here is the general result on mean hitting times. Recall that kf =
Ei(HA ), where H A is the first time (Xn)n~O hits A. We use the notation
1B for the indicator function of B, so, for example, 1x1 ==j is the random
variable equal to 1 if Xl = j and equal to 0 otherwise.

Theorem 1.3.5. The vector of mean hitting times kA = (k A : i E I) is
the minimal non-negative solution to the system of linear equations

{
kf = 0 for i E A

kf = 1 + Ej~A pijkf for i f/: A.

Proof. First we show that k A satisfies (1.4). If Xo = i E A, then HA = 0,
so kf = o. If Xo = i f/: A, then HA ~ 1, so, by the Markov property,

and

kt = Ei(HA
) = L Ei(HA 1X1 =j)

JEI

= LEi(HA IXl = j)JP\(XI = j) = 1 + LPijkf·
JEI j~A

Suppose now that Y = (Yi : i E I) is any solution to (1.4). Then kf = Yi = 0
for i E A. If i f/: A, then

Yi = 1 + LPijYj
j~A

= 1 + LPij (l + LPjkYk)
j~A k~A

= lP'i(HA ~ 1) + lP'i(HA ~ 2) + L L PijPjkYk·
j~A k~A

By repeated substitution for Y in the final term we obtain after n steps

Yi = lP'i(H
A ~ 1) + ... + lP'i(HA ~ n) + L ... L PiilPilh .. 'Pjn-dnYjn'

jl~A jn~A
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So, if y is non-negative,

Yi 2: Wi(H A 2: 1) + ... + Wi(H A 2: n)

and, letting n ----* 00,

Yi 2': L IP\(HA 2': n) = JEi(HA
) = Xi-

n==l

D

Exercises

1.3.1 Prove the claims (a), (b) and (c) made in example (v) of the Intro­
duction.

1.3.2 A gambler has £2 and needs to increase it to £10 in a hurry. He
can play a game with the following rules: a fair coin is tossed; if a player
bets on the right side, he wins a sum equal to his stake, and his stake is
returned; otherwise he loses his stake. The gambler decides to use a bold
strategy in which he stakes all his money if he has £5 or less, and otllerwise
stakes just enough to increase his capital, if he wins, to £10.

Let X o == 2 and let X n be his capital after n throws. Pro~e that the
gambler will achieve his aim with probability 1/5.

What is the expected number of tosses until the gambler either achieves
his aim or loses his capital?

1.3.3 A simple game of 'snakes and ladders' is played on a board of nine
squares.
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At each turn a player tosses a fair coin and advances one or two places
according to whether the coin lands heads or tails. If you land at the foot
of a ladder you climb to the top, but if you land at the head of a snake you
slide down to the tail. How many turns on average does it take to complete
the game?

What is the probability that a player who has reached the middle square
will complete the game without slipping back to square I?

1.3.4 Let (Xn)n~O be a Markov chain on {O, 1, ... } with transition proba­
bilities given by

(
i + 1) 2

POI = 1, Pi,i+l +Pi,i-l = 1, Pi,i+l = -i- Pi,i-l, i ~ 1.

Show that if Xo = 0 then the probability that X n ~ 1 for all n ~ 1 is 6/1T2
•

1.4 Strong Markov property

In Section 1.1 we proved the Markov property. This says that for each time
m, conditional on X m = i, the process after time m begins afresh from
i. Suppose, instead of conditioning on X m = i, we simply waited for the
process to hit state i, at some random time H. What can one say about the
process after time H? What if we replaced H by a more general random
time, for example H - I? In this section we shall identify a class of random
times at which a version of the Markov property does hold. This class will
include H but not H -- 1; after all, the process after time H - 1 jumps
straight to i, so it does not simply begin afresh.

A random variable T : n ~ {O, 1,2, ... } U {(X)} is called a stopping time
if the event {T = n} depends only on X o, Xl, ... ,Xn for n = 0,1,2, ....
Intuitively, by watching the process, you know at the time when T occurs.
If asked to stop at T, you know when to stop.

Examples 1.4.1

(a) The first passage time

Tj = inf{n ~ 1 : X n = j}

is a stopping time because

(b) The first hitting time H A of Section 1.3 is a stopping time because

{HA = n} = {Xo ~ A, ... ,Xn - l ~ A,Xn E A}.
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(c) The last exit time

1. Discrete-time Markov chains

LA = sup{n ~ 0 : X n E A}

is not in general a stopping time because the event {LA == n} depends on
whether (Xn+m)m~l visits A or not.

We sllall show that the Markov property holds at stopping times. The
crucial point is that, if T is a stopping time and B ~ n is determined by
X o,Xl, ... ,XT , then B n {T == m} is determined by X o,Xl, ... ,Xm, for
all m = 0, 1, 2, ....

Theorem 1.4.2 (Strong Markov property). Let (Xn)n~O be
Markov(A, P) and let T be a stopping time of (Xn)n~O. Then, conditional
on T < 00 and X T = i, (XT+n)n~O is Markov(8i , P) and independent of
XO,XI ,.·. ,XT.

Proof. If B is an event determined by X o,Xl, ... ,XT , then B n {T = m}
is determined by X o, Xl, ... ,Xm , so, by the Markov property at time m

lP({XT = io, XT+I = il, ,XT+n = in} n B n {T = m} n {XT = i})

= JP>i(XO = io,XI = jl, ,Xn = jn)JP>(B n {T = m} n {XT = i})

where we have used the condition T = m to replace m by T. Now sum over
m == 0, 1, 2, ... and divide by lP(T < 00, X T = i) to obtain

JP>({XT = jo, X T+I = jl, ,XT+n = jn} n BIT < 00, X T = i)

= JP>i(XO = jo, Xl = jl, ,Xn = jn)JP>(B IT < 00, X T = i). D

The following example uses the strong Markov property to get more
information on the hitting times of the chain considered in Example 1.3.3.

Example 1.4.3

Consider the Markov chain (Xn)n~O with diagram

•o
q p
I( • ~

1

q p q p
I( • ~ I(.~

i i + 1
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where 0 < p = 1 - q < 1. We know from Example 1.3.3 the probability of
hitting 0 starting from 1. Here we obtain the complete distribution of the
time to hit 0 starting from 1 in terms of its probability generating function.
Set

H j = inf{n ~ 0 : X n = j}

and, for 0 ~ s < 1

</>(s) = lEI (sHo) = 2: snIP1 (Ho = n).
n<oo

Suppose we start at 2. Apply the strong Markov property at !II to see
that under lP2, conditional on HI < 00, we have H o = HI + H o, where
iio, the time taken after HI to get to 0, is independent of HI and has the
(unconditioned) distribution of HI. So

E2(SHO) = E2(sHl IHI < 00)E2(sHO IHI < 00)JP>2(Hl < 00)

= E2(sHI1Hl<OO)E2(sHO I HI < 00)

= E2(sHl)2 = ¢(s)2.

Then, by the Markov property at time 1, conditional on Xl = 2, we have
Ho = 1 + H o, where H o, the time taken after time 1 to get to 0, has the
same distribution as Ho does under lP2 . So

¢(s) = El(sHo) = pEl (sHo I Xl = 2) + qEl(sHo IXl = 0)

= pEl (sl+Ho IXl = 2) + qEl(s IXl = 0)

= psE2(sHo) + qs

= ps¢(s)2 + qs.

Thus ¢ = ¢(s) satisfies
pS¢2 - ¢ + qs = 0

and

(1.5)

¢ = (1 ± VI - 4pqs2)/2ps.

Since ¢(O) ~ 1 and ¢ is continuous we are forced to take the negative root
at s = 0 and stick with it for all 0 ~ s < 1.

To recover the distribution of Ho we expand the square-root as a power
series:

</>(s) = 2~S { 1- (1 + !(-4pqs2) + !(-lH_4pqs2)2 /2! + ... ) }

2 3= qs +pq s + ...
= slPl(Ho = 1) + s2lPl (Ho = 2) + s3lPl (Ho = 3) + ....
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The first few probabilities P1(Ho = 1),P1(Ho = 2), ... are readily checked
from first principles.

On letting s i 1 we have ¢(s) ~ P1(Ho < 00), so

lI]) (Ii ) _ 1 - VI - 4pq _ { 1 if p ~ q
.1rl 0 < 00 - -

2p q/p if p > q.

(Remember that q = 1 - p, so

VI - 4pq = VI - 4p + 4p2 = 11 - 2pl = 12q - 11.)

We can also find the mean hitting time using

It is only worth considering the case p ~ q, where the mean hitting time
has a chance of being finite. Differentiate (1.5) to obtain

2ps¢¢' + p¢2 - ¢' + q = 0

so

¢'(s) = (p¢(S)2 + q)/(l - 2ps¢(s)) ~ 1/(1 - 2p) = l/(q - p) as s i 1.

See Example 5.1.1 for a connection with branching processes.

Example 1.4.4

We now consider an application of the strong Markov property to a Markov
chain (Xn)n~O observed only at certain times. In the first instance suppose
that J is some subset of the state-space I and that we observe the chain
only when it takes values in J. The resulting process (Ym)m~O may be
obtained formally by setting Ym = X Trn , where

To = inf{n ~ 0 : X n E J}

and, for m = 0, 1, 2, ...

Tm +1 = inf{n > Tm : X n E J}.

Let us assume that lP(Tm < 00) = 1 for all m. For each m we can check
easily that Tm, the time of the mth visit to J, is a stopping time. So the
strong Markov property applies to show, for i o, ... ,im+l E J, that

P(Ym +1 = i m +1 IYo = i o,··· , Ym = im )

= P(XTrn+1 = i m +1 I X To = i o,··· ,XTrn = im)
= Pi (XT = i m +1 ) = p-. .rn 1 't rn 't rn+l
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(1.6)

- hi
Pii = i

and where, for j E J, the vector (h{ : i E I) is the minimal non-negative
solution to

h{ = Pij + LPikh1·
k~J

Thus (Ym)m~O is a Markov chain on J with transition matrix P.

A second example of a similar type arises if we observe the original chain
(Xn)n~O only when it moves. The resulting process (Zm)m~O is given by
Zm = XSrn where 8 0 = 0 and for m = 0,1,2, ...

Let us assume there are no absorbing states. Again the random times 8 m

for m ~ 0 are stopping times and, by the strong Markov property

lP(Zm+l = im+l I Zo = io,··· ,Zm = im)

= lP(XSrn+1 = im+l I XSo = io, ... ,Xsrn = im )

= lPirn (XS1 = i m +1 ) = Pirnirn+l

where Pii = 0 and, for i =I j

Pij = Pij/ LPik.
k=j:i

Thus (Zm)m~O is a Markov chain on I with transition matrix P.

Exercises

1.4.1 Let Y1 , Y2 , ••• be independent identically distributed random vari­
ables with
lP(Y1 = 1) = lP(Y1 = -1) = 1/2 and set Xo = 1, X n = Xo + Y1 + ... + Yn

for n ~ 1. Define
Ho = inf{n ~ 0 : X n = O}.

Find the probability generating function ¢(s) = E(sHO).
Suppose the distribution of Y1 , "Y2, ... is changed to lP(Y1 = 2) = 1/2,

lP(Y1 = -1) = 1/2. Show that ¢ now satisfies

s¢3 - 2¢ + s = 0 .

1.4.2 Deduce carefully from Theorem 1.3.2 the claim made at (1.6).



24 1. Discrete-time Markov chains

1.5 Recurrence and transience

Let (Xn)n~O be a Markov chain with transition matrix P. We say that a
state i is recurrent if

lPi(Xn = i for infinitely many n) = 1.

We say that i is transient if

IPi(Xn = i for infinitely many n) = O.

Thus a recurrent state is one to which you keep coming back and a transient
state is one which you eventually leave for ever. We shall show that every
state is either recurrent or transient.

Recall that the first passage time to state i is the random variable Ti

defined by
Ti(W) = inf{n ~ 1 : Xn(w) = i}

where inf 0 = 00. We IIOW define inductively the rth passage time Ti(r) to
state i by

and, for r = 0,1,2, ... ,

The length of the rth excursion to i is then

{

T(r) _ T(r-I)
S~r) = i i

~ 0

·f T(r-I)
1 i < 00

otherwise.

The following diagram illustrates these definitions:

Xn

i
T.(O)

~

n
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Our analysis of recurrence and transience will rest on finding the joint
distribution of these excursion lengths.

Lemma 1.5.1. For r = 2,3, ... , conditional on Ti(r-I) < 00, sir) is inde­
pendent of {Xm : m ~ Ti(r-I)} and

Proof. Apply the strong Markov property at the stopping time T = Ti(r-I).

It is automatic that X T = i on T < 00. So, conditional on T < 00,

(XT+n)n~O is Markov(8i , P) and independent of X o, Xl, ... ,XT . But

sir) = inf{n ~ 1 : X T +n = i},

so sir) is the first passage time of (XT+n)n~O to state i. D

Recall that the indicator function l{xl==j} is the random variable equal
to 1 if Xl = j and 0 otherwise. Let us introduce the number of visits Vi to
i, which may be written in terms of indicator functions as

00

Vi = L l{xn =i}
n==O

and note that

00 00 00 00

lEi(Vi) = lEi L l{Xn =i} = L lEi(l{Xn =i}) = LlPi(Xn = i) = LP~7).
n==O n==O n==O n==O

Also, we can compute the distribution of Vi under Pi in terms of the return
probability

Lemma 1.5.2. For r = 0,1,2, ... , we have Pi (Vi > r) = fi.

Proof. Observe that if Xo = i then {Vi > r} = {Ti(r) < oo}. When r = 0
the result is true. Suppose inductively that it is true for r, then

( ) (
(r+I) )Pi Vi > r + 1 = Pi Ti < 00

= Pi(Ti(r) < 00 and sir+I) < 00)

= Pi (Sfr+I) < 00 ITi(r) < oo)Pi(Ti(r) < 00)

= fif; = f[+1

by Lemma 1.5.1, so by induction the result is true for all r. D
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Recall that one can compute the expectation of a non-negative integer­
valued random variable as follows:

00 00 00

LP(V > r) = L L P(V = v)
r=O r=Ov=r+1

00 v-I 00

= L LP(V -="' v) = L vP(V = v) = E(V).
v=lr=O v=1

The next theorem is the means by which we establish recurrence or
transience for a given state. Note that it provides two criteria for this, one
in terms of the return probability, ttle other in terms of the n-step transition
probabilities. Both are useful.

Theorem 1.5.3. The following dichotomy holds:

(i) ifIPi(Ti < 00) = 1, then i is recurrent and E~op~~) = 00;

(ii) ifIPi(Ti < 00) < 1, then i is transient and E~op~~) < 00.

In particular, every state is either transient or recurrent.

Proof. If IPi(Ti < 00) = 1, then, by Lemma 1.5.2,

IPi(Vi = 00) = lim IPi(Vi > r) = 1
r--+-oo

so i is recurrent and
00

LP~~) = Ei(Vi) = 00.

n=O

On the other hand, if Ii = IPi(Ti < 00) < 1, then by Lemma 1.5.2

fp~~) = Ei(Vi) = fpi(Vi > r) = fl[ = 1 ~ . < 00

n=O r=O r=O f'l,

so IPi (Vi = 00) = 0 and i is transient. D

From this theorem we can go on to solve completely the problem of
recurrence or transience for Markov chains with finite state-space. Some
cases of infinite state-space are dealt with in the following chapter. First
we show that recurrence and transience are class properties.

Theorem 1.5.4. Let C be a communicating class. Then either all states
in C are transient or all are recurrent.

Proof. Take any pair of states i, j E C and suppose that i is transient.
There exist n, m ~ 0 with p~j) > 0 and PJ":) > 0, and, for all r ~ 0

(n+r+m) > (n) (r) (m)
Pii - Pij Pjj Pji
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so

~ (r) < 1 ~ (n+r+m)
LJPjj - (n) (m) LJPii < 00
r==O Pij Pji r==O

by Theorem 1.5.3. Hence j is also transient by Theorem 1.5.3. D
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In the light of this theorem it is natural to speak of a recurrent or transient
class.

Theorem 1.5.5. Every recurrent class is closed.

Proof. Let C be a class which is not closed. Then there exist i E C, j fj. C
and m ~ 1 with

Since we have

lPi ( {Xm = j} n {Xn = i for infinitely many n}) = 0

this implies that

lPi(Xn = i for infinitely many n) < 1

so i is not recurrent, and so neither is C. D

Theorem 1.5.6. Every finite closed class is recurrent.

Proof. Suppose C is closed and finite and that (Xn)n~O starts in C. Then
for some i E C we have

o< P(Xn = i for infinitely many n)

= lP(Xn = i for some n)Pi(Xn = i for infinitely many n)

by the strong Markov property. This shows that i is not transient, so C is
recurrent by Theorems 1.5.3 and 1.5.4. D

It is easy to spot closed classes, so the transience or recurrence of finite
classes is easy to determine. For example, the only recurrent class in Ex­
ample 1.2.2 is {5, 6}, the others being transient. On the other hand, infinite
closed classes may be transient: see Examples 1.3.3 and 1.6.3.

We shall need the following result in Section 1.8. Remember that irre­
ducibility means that the chain can get from any state to any other, with
positive probability.



28 1. Discrete-time Markov chains

Theorem 1.5.7. Suppose P is irreducible and recurrent. Then for all
j E I we have lP(Tj < 00) = 1.

Proof. By the Markov property we have

lP(Tj < (0) = LlP(Xo = i)lPi(Tj < (0)
iEI

so it suffices to show lPi (Tj < (0) = 1 for all i E I. Choose m with p;:n) > o.
By Theorem 1.5.3, we have

1 = Pj(Xn = j for infinitely many n)

= lPj(Xn = j for some n ~ m + 1)

= L lPj(Xn = j for some n ~ m + 1 IX m = k)lPj(Xm = k)
kEI

= L lPk(Tj < oo)p;7:)
kEI

where the final equality uses the Markov property. But EkE! p;7:) = 1 so
we must have Pi(Tj < 00) = 1. D

Exercises

1.5.1 In Exercise 1.2.1, which states are recurrent and which are transient?

1.5.2 Show that, for the Markov chain (Xn)n~O in Exercise 1.3.4 we have

lP(Xn ~ 00 as n ~ 00) = 1.

Suppose, instead, the transition probabilities satisfy

(i+l)O
Pi,i+l = -i- Pi,i-l·

For each Q E (0,00) find the value of P(Xn ~ 00 as n ~ 00).

1.5.3 (First passage decomposition). Denote by Tj the first passage
time to state j and set

Justify the identity

n

P~~) = '"' f~~)p~~-k)
I) ~ I) ))

k==l

for n ~ 1
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and deduce that

where
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CX)

Pij(s) = LP~;)sn,
n==O

00

Fij (s) = L fi~n) sn ·
n==O

Hence show that Pi (Ti < 00) = 1 if and only if
00

LP~~) = 00

n==O
without using Theorem 1.5.3.

1.5.4 A random sequence of non-negative integers (Fn)n~o is obtained by
setting Fo = 0 and F 1 = 1 and, once Fo, ... ,Fn are known, taking Fn+1 to
be either the sum or the difference of Fn - 1 and Fn , each with probability
1/2. Is (Fn)n~o a Markov chain?

By considering the Markov chain X n = (Fn- 1 , Fn), find the probability
that (Fn)n~o reaches 3 before first returning to O.

Draw enough of the flow diagram for (Xn)n~O to establish a general
pattern. Hence, using the strong Markov property, show that the hitting
probability for (1,1), starting from (1,2), is (3 - V5)/2.

Deduce that (Xn)n~O is transient. Show that, moreover, with probability
1, Fn ~ 00 as n ~ 00.

1.6 Recurrence and transience of random walks

In the last section we showed that recurrence was a class property, that all
recurrent classes were closed and that all finite closed classes were recurrent.
So the only chains for which the question of recurrence remains interesting
are irreducible with infinite state-space. Here we shall study some simple
and fundamental examples of this type, making use of the following criterion
for recurrence from Theorem 1.5.3: a state i is recurrent if and only if
~oo (n)_
L..Jn==O Pii - 00.

Example 1.6.1 (Simple random walk on Z)

The simple random walk on Z has diagram

i-I

q P
... . ..

i i+l
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where 0 < P = 1 - q < 1. Suppose we start at O. It is clear that we cannot
return to 0 after an odd number of steps, so p~~n+l) = 0 for all n. Any
given sequence of steps of length 2n from 0 to 0 occurs with probability
pnqn, there being n steps up and n steps down, and the number of such
sequences is the number of ways of choosing the n steps up from 2n. Thus

(2n) (2n) n nPoo = p q .
n

Stirling's formula provides a good approximation to n! for large n: it is
known that

asn~oo

where an rv bn means an/bn ~ 1. For a proof see W. Feller, An Introduction
to Probability Theory and its Applications, Vol I (Wiley, New York, 3rd
edition, 1968). At the end of this chapter we reproduce the argument used
by Feller to show that

asn~oo

for some A E [1,00). The additional work needed to show A = y'2;IT is
omitted, as this fact is unnecessary to our applications.

For the n-step transition probabilities we obtain

(2n) _ (2n)! ( )n rv (4pq)n
Poo - (n!)2 pq AJn/2 as n ~ 00.

In the symmetric case p = q = 1/2, so 4pq = 1; then for some N and all
n ~ N we have

(2n) > 1
Poo - 2AVii

so

~ (2n) > --.!... ~ _1 _
~ Poo - 2A~ Vii - 00

which shows that the random walk is recurrent. On the other hand, if p =I q

then 4pq = r < 1, so by a similar argument, for some N

00 1 00

'"" p(n) < _ '"" rn < 00
~ 00 -A ~

n==N n=N

showing that the random walk is transient.
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Example 1.6.2 (Simple symmetric random walk on Z2)

The simple symmetric random walk on Z2 has diagram

1

1 :4
:4

...... ,
1

1 ,~
:4

:4
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and transition probabilities

{
1/4 ifli-jl==l

Pij == 0 otherwise.

Suppose we start at o. Let us call the walk X n and write X~ and X; for
the orthogonal projections of X n on the diagonal lines y == ±x:

X+
n

Then X~ and X; are independent simple symmetric random walks on
2-1/ 2 Z and X n == 0 if and only if X~ == 0 == X;. This makes it clear that
for X n we have

(2n)
Poo == asn~oo
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by Stirling's formula. Then E::o p~~) = 00 by comparison with E::o l/n
and the walk is recurrent.

Example 1.6.3 (Simple symmetric random walk on Z3)

The transition probabilities of the simple symmetric random walk on Z3
are given by

P
.. _ {1/6 if Ii - jl = 1

'1,) - o otherwise.

Thus the chain jumps to each of its nearest neighbours with equal probabil­
ity. Suppose we start at O. We can only return to 0 after an even number
2n of steps. Of these 2n steps there must be i up, i down, j north, j south,
k east and k west for some i,j, k ~ 0, with i + j + k = n. By counting the
ways in which this can be done, we obtain

(2n) _
Poo -

Now

i,j,k~O

i+j+k=n

(2n)!
( ., ·'k')2~.J ..

i,j,k~O

i+j+k=n

i,j,k~O

i+j+k=n

the left-hand side being the total probability of all the ways of placing n
balls randomly into three boxes. For the case where n = 3m, we have

( n ) n! (n)
ij k = i!j!k! ~ mmm

for all i, j, k, so

(~) 3/2
asn~oo

by Stirling's formula. Hence, E:=o p~~m) < 00 by comparison with
,",00 -3/2 B t (6m) > (1/6)2 (6m-2) d (6m) > (1/6)4 (6m-4) £
L...Jn=O n . u Poo Poo an Poo _ Poo or
all m so we must have

and the walk is transient.
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1.6.1 The rooted binary tree is an infinite graph T with one distinguished
vertex R from which comes a single edge; at every other vertex there are
three edges and there are no closed loops. The random walk on T jumps
from a vertex along each available edge with equal probability. Show that
the random walk is transient. \

1.6.2 Show that the simple symmetric random walk in Z4 is transient.

1.7 Invariant distributions

Many of the long-time properties of Markov chains are connected with the
notion of an invariant distribution or measure. Remember that a measure
A is any row vector (Ai : i E I) with non-negative entries. We say A is
invariant if

AP == A.

The terms equilibrium and stationary are also used to mean the same. The
first result explains the term stationary.

Theorem 1.7.1. Let (Xn)n~O be Markov(A,P) and suppose that A is in­
variant for P. Then (Xm+n)n~O is also Markov(A, P).

Proof. By Theorem 1.1.3, P(Xm == i) == (Apm)i == Ai for all i and, clearly,
conditional on X m+n == i, X m+n+1 is independent of X m , X m +1 , ... ,Xm+n
and has distribution (Pij : j E I). D

The next result explains the term equilibrium.

Theorem 1.7.2. Let I be finite. Suppose for some i E I that

p~j) ---t 7rj as n ---t 00 for all j E I.

Then 7r == (7rj : j E I) is an invariant distribution.

Proof. We have

L L 1· (n) 1· L (n) 17rj == 1m P - - == 1m P - - ==
n~oo ~J n~oo ~J

jEI jEI jEI

and

1· (n) 1· L (n) L 1· (n) L7rj == 1m P- - == 1m P-k Pkj == 1m P-k Pkj == 7rkPkj
n~oo ~J n~oo ~ n~oo ~

kEI kEI kEI
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where we have used finiteness of I to justify interchange of summation and
limit operations. Hence 7r is an invariant distribution. D

Notice that for any of the random walks discussed in Section 1.6 we have
p~;) ---t 0 as n ---t 00 for all i, j E I. The limit is certainly invariant, but it
is not a distribution!

Theorem 1.7.2 is not a very useful result but it serves to indicate a rela­
tionship between invariant distributions and n-step transition probabilities.
In Theorem 1.8.3 we shall prove a sort of converse, which is much more
useful.

Example 1.7.3

Consider the two-state Markov chain with transition matrix

(
l-ap-- (3

Ignore the trivial cases 0: = (3 = 0 and 0: = (3 = 1. Then, by Example 1.1.4

pn ~ ((3/(a + (3)
(3/(a + (3)

a/(a + (3))
a/(a + (3)

as n ~ 00,

so, by Theorem 1.7.2, the distribution ((3/(0: + (3),0:/(0: + (3)) must be
invariant. There are of course easier ways to discover this.

Example 1.7.4

Consider the Markov chain (Xn)n~O with diagram

1

3 1
2

2

To find an invariant distribution we write down the components of the
vector equation 7rP = 7r

7rl = ~7r3
1 1

7r2 = 27r1 + 2 7r3

_ 1 1
7r3 - 27r2 + 2 7r3 ·
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In terms of the chain, the right-hand sides give the probabilities for Xl,
when Xo has distribution 7r, and the equations require Xl also to have
distribution 7r. The equations are homogeneous so one of them is redundant,
and another equation is required to fix 7r uniquely. That equation is

and we find that 7r = (1/5,2/5,2/5).

According to Example 1.1.6

pi~) ~ 1/5 as n ~ 00

so this confirms Theorem 1.7.2. Alternatively, knowing that p~~) had the
form

(n) (l)n ( n7r . n7r)
PII = a + 2 bcos 2 + CSln 2

we could have used Theorem 1.7.2 and knowledge of 7r1 to identify a = 1/5,

instead of working out p~;) in Example 1.1.6.

In the next two results we shall show that every irreducible and recurrent
stochastic matrix P has an essentially unique positive invariant measure.
The proofs rely heavily on the probabilistic interpretation so it is worth
noting at the outset that, for a finite state-space I, the existence of an
invariant row vector is a simple piece of linear algebra: the row sums of P
are alII, so the column vector of ones is an eigenvector with eigenvalue 1,
so P must have a row eigenvector with eigenvalue 1.

For a fixed state k, consider for each i the expected time spent in i between
visits to k:

Tk- l

')'f = lEk L l{xn =i}'

n=O

Here the sum of indicator functions serves to count the number of times n
at which X n = i before the first passage time Tk .

Theorem 1.7.5. Let P be irreducible and recurrent. Then

(i) l'~ = 1;
(ii) l'k = (l'f : i E I) satisfies l'k P = l'k ;

(iii) 0 < Tf < 00 for all i E I.

Proof. (i) This is obvious. (ii) For n = 1,2, ... the event {n ::; Tk} depends
only on Xo, Xl, . .. ,Xn - l , so, by the Markov property at n - 1
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Since P is recurrent, under IPk we have Tk < 00 and X o = X Tk = k with
probability one. Therefore

Tk 00

,j = lEk L l{xn =j} = lEk L l{Xn =j and nSTd
n=l n=l

00

= L JP>k(Xn = j and n ~ Tk)
n=l

00

= L L JP>k(Xn - 1 = i, X n = j and n ~ Tk)
iEI n=l

00

= LPij L JP>k(Xn - 1 = i and n ~ Tk)
iEI n=l

00

= LpijlEk L l{Xtn =i and msTk- 1}

iEI m=O

Tk- 1

= LPijlEk L l{Xtn =i} = L ,fpij.
iEI m=O iEI

(iii) Since P is irreducible, for each state i there exist n, m ~ 0 with
(n) (m) 0 Th k k (m) 0 d k (n) k b () d

Pik ,Pki >. en ~i ~ ~kPki > an ~i Pik ~ ~k = 1 Y i an
(ii). D

Theorem 1.7.6. Let P be irreducible and let A be an invariant measure
for P with Ak = 1. Then A ~ ~k. If in addition P is recurrent, then A = ~k .

Proof. For each j E I we have

Aj = L AioPioj = L AioPioj + Pkj
ioEI io#k

= L Ai1Pi1ioPioj + (Pk j + L PkioPiOj )
io,il#k io#k

L AinPinin-l · · · Pioj
i o ,... ,in=j:k

+ (Pkj + L PkioPioj + · · · + L Pkin-l · · · PilioPioj )
io#k io, ... ,in -l#k

~ IPk(X1 = j and Tk ~ 1) + IPk(X2 = j and Tk ~ 2)

+ ... +IPk(Xn =j and Tk ~ n)

~ ~j as n ~ 00.
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So A ~ ~k. If P is recurrent, then ~k is invariant by Theorem 1.7.5, so
J-l = A - ~k is also invariant and /-l ~ O. Since P is irreducible, given i E I,

h (n) 0 £ dO'" (n) (n)we ave Pik > or some n, an = /-lk = LJjEI /-ljPjk ~ /-liPik , so
J-li = O. 0

Recall that a state i is recurrent if

IPi(Xn = i for infinitely many n) = 1

and we showed in Theorem 1.5.3 that this is equivalent to

If in addition the expected return time

is finite, then we say i is positive recurrent. A recurrent state which fails to
have this stronger property is called null recurrent.

Theorem 1.7.7. Let P be irreducible. Then the following are equivalent:

(i) every state is positive recurrent;

(ii) some state i is positive recurrent;

(iii) P has an invariant distribution, 7r say.
Moreover, when (iii) holds we have mi = 1/7ri for all i.

Proof. (i) => (ii) This is obvious.
(ii) => (iii) If i is positive recurrent, it is certainly recurrent, so P is recur­
rent. By Theorem 1.7.5, ~i is then invariant. But

L~j = mi < 00

jEI

so 7rj = ~; /mi defines an invariant distribution.
(iii) => (i) Take any state k. Since P is irreducible and EiEI 7ri = 1 we have

7rk = EiEI 7riP~~) > 0 for some n. Set Ai = 7ri/7rk. Then A is an invariant
measure with Ak = 1. So by Theorem 1.7.6, A ~ ~k. Hence

L k L 7ri 1
mk = ~. ~ - = - < 00

~ 7r 7r
iEI iEI k k

and k is positive recurrent.

(1.7)
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To complete the proof we return to the argument for (iii) => (i) armed
with the knowledge that P is recurrent, so A = ~k and the inequality (1.7)
is in fact an equality. 0

Example 1.7.8 (Simple symmetric random walk on Z)

The simple symmetric random walk on Z is clearly irreducible and, by
Example 1.6.1, it is also recurrent. Consider the measure

7ri = 1 for all i.

Then

so 7r is invariant. Now Theorem 1.7.6 forces any invariant measure to be
a scalar multiple of 7r. Since LiEZ 7ri = 00, there can be no invariant
distribution and the walk is therefore null recurrent, by Theorem 1.7.7.

Example 1.7.9

The existence of an invariant measure does not guarantee recurrence: con­
sider, for example, the simple symmetric random walk on Z3, which is
transient by Example 1.6.3, but has invariant measure 7r given by 7ri = 1
for all i.

Example 1.7.10

Consider the asymmetric random walk on Z with transition probabilities
Pi,i-l = q < P = Pi,i+l· In components the invariant measure equation
7rP = 7r reads

This is a recurrence relation for 7r with general solution

So, in this case, there is a two-parameter family of invariant measures ­
uniqueness up to scalar multiples does not hold.

Example 1.7.11

Consider a success-run chain on Z+ , whose transition probabilities are given
by

Pi,i+l = Pi, PiO = qi = 1 - Pi·
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Then the components of the invariant measure equation 7rP = 7r read

00

1ro = L qi1ri,
i=O

7ri = Pi-l7ri-l, for i ~ 1.

Suppose we choose Pi converging sufficiently rapidly to 1 so that

00

P = IIpi > 0
i=O

which is equivalent to
00

Lqi = 00.

i=O

Then for any solution of 7rP = 7r we have

and so
00

1ro ~ JJ7ro L qi·
i=O
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This last equation forces either 7ro = 0 or 7ro = 00, so there is no invariant
measure.

Exercises

1.7.1 Find all invariant distributions of the transition matrix in Exercise
1.2.1.

1.7.2 Gas molecules move about randomly in a box which is divided into two
halves symmetrically by a partition. A hole is made in the partition. Sup­
pose there are N molecules in the box. Show that the number of molecules
on one side of the partition just after a molecule has passed through the hole
evolves as a Markov chain. What are the transition probabilities? What is
the invariant distribution of this chain?

1.7.3 A particle moves on the eight vertices of a cube in the following
way: at each step the particle is equally likely to move to each of the three
adjacent vertices, independently of its past motion. Let i be the initial
vertex occupied by the particle, 0 the vertex opposite i. Calculate each of
the following quantities:
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(i) the expected number of steps until the particle returns to i;

(ii) the expected number of visits to 0 until the first return to i;

(iii) the expected number of steps until the first visit to o.

1.7.4 Let (Xn)n~O be a simple random walk on Z with Pi,i-l = q < P =
Pi,i+l. Find

(

TO-l )

,f = lEo L l{xn =i}
n=O

and verify that
T'~ = inf Ai for all i

~ A

where the infimum is taken over all invariant measures A with Ao 1.
(Compare with Theorem 1.7.6 and Example 1.7.10.)

1.7.5 Let P be a stochastic matrix on a finite set I. Show that a distribution
7r is invariant for P if and only if 7r(I -P+A) = a, where A = (aij : i,j E I)
with aij = 1 for all i and j, and a = (ai : i E I) with ai = 1 for all i. Deduce
that if P is irreducible then I -P+A is invertible. Note that this enables one
to compute the invariant distribution by any standard method of inverting
a matrix.

1.8 Convergence to equilibrium

We shall investigate the limiting behaviour of the n-step transition proba­
bilities p~;) as n ~ 00. As we saw in Theorem 1.7.2, if the state-space is
finite and if for some i the limit exists for all j, then it must be an invariant
distribution. But, as the following example shows, the limit does not always
exist.

Example 1.8.1

Consider the two-state chain with transition matrix

p=(~ ~).

Then p2 = I, so p2n = I and p 2n+l = P for all n. Thus p~j) fails to
converge for all i, j.

Let us call a state i aperiodic if p~~) > 0 for all sufficiently large n. We
leave it as an exercise to show that i is aperiodic if and only if the set
{n 2:: 0 : p~~) > O} has no common divisor other than 1. This is also
a consequence of Theorem 1.8.4. The behaviour of the chain in Example
1.8.1 is connected with its periodicity.
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Lemma 1.8.2. Suppose P is irreducible and has an aperiodic state i.

Then, for all states j and k, PJ~) > 0 for all sufflciently large n. In particular,
all states are aperiodic.

P ,I Th · > 0 · h (r) (s) 0 ThrooJ. ere eXIst r, S _ WIt Pji' Pik >. en

(r+n+s) > (r) (n) (s) > 0
Pjk - Pji Pii Pik

for all sufficiently large n. 0

Here is the main result of this section. The method of proof, by coupling
two Markov chains, is ingenious.

Theorem 1.8.3 (Convergence to equilibrium). Let P be irreducible
and aperiodic, and suppose that P has an invariant distribution 7r. Let A
be any distribution. Suppose that (Xn)n~O is Markov(A, P). Then

P(Xn = j) ~ 7rj as n ~ 00 for all j.

In particular,
p~;) ---t 'lrj as n ---t 00 for all i, j.

Proof. We use a coupling argument. Let (Yn)n~O be Markov(7r, P) and
independent of (Xn)n~O. Fix a reference state b and set

T = inf{n 2:: 1 : X n = Yn = b}.

Step 1. We show P(T < 00) = 1. The process Wn = (Xn , Y n ) is a Markov
chain on I x I with transition probabilities

P(i,k)(j,l) = PijPkl

and initial distribution
jj(i,k) = Ai7rk.

Since P is aperiodic, for all states i, j, k, l we have

~n) (n) (n) 0
P(i,k)(j,l) = Pij Pkl >

for all sufficiently large n; so P is irreducible. Also, P has an invariant
distribution given by

7r(i,k) = 7ri7rk

so, by Theorem 1.7.7, P is positive recurrent. But T is the first passage
time of W n to (b, b) so P(T < 00) = 1, by Theorem 1.5.7.
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Step 2. Set
ifn < T

if n ~ T.

The diagram below illustrates the idea. We show that (Zn)n~O is
Markov(;\, P).

I

n

The strong Markov property applies to (Wn)n~O at time T, so

(XT+n, YT+n)n~O is Markov(8(b,b), P) and independent of (Xo,Yo),
(XI, YI), . .. , (XT, YT ) . By symmetry, we can replace the process
(XT+n, YT+n)n~O by (YT+n,XT+n)n~O which is also Markov(8(b,b), P) and
remains independent of (Xo,Yo), (Xl, YI), ... ,(XT ,YT). Hence W~ =

(Zn, Z~) is Markov(j.t, P) where

, { Yn
Z =

n X
n

ifn < T

if n 2 T.

In particular, (Zn)n~O is Markov(;\, P).

Step 3. We have

lP(Zn = j) = lP(Xn = j and n < T) +lP(Yn = j and n 2 T)

so

IlP(Xn = j) - 7rjl = IlP(Zn = j) -lP(Yn = j)1

= IlP(Xn = j and n < T) -lP(Yn = j and n < T)I

~ lP(n < T)

and P(n < T) ~ 0 as n ~ 00. D
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To understand this proof one should see what goes wrong when P is
not aperiodic. Consider the two-state chain of Example 1.8.1 which has
(1/2, 1/2) as its unique invariant distribution. We start (Xn)n~O from 0
and (Yn)n~O with equal probability from 0 or 1. However, if Yo = 1, then,
because of periodicity, (Xn)n~O and (Yn)n~O will never meet, and the proof
fails. We move on now to the cases that were excluded in the last theorem,
where (Xt)~o is periodic or transient or null recurrent. The remainder of
this section might be omitted on a first reading.

Theorem 1.8.4. Let P be irreducible. There is an integer d ~ 1 and a
partition

I = Co U C 1 U ... U Cd-1

such that (setting Cnd+r = Cr)

(i) p~j) > 0 only if i E Cr and j E Cr+n for some r;

(ii) p~jd) > 0 for all sufficiently large n, for all i,j E Cr, for all r.

Proof. Fix a state k and consider S = {n ~ 0 : P~~ > O}. Choose n1, n2 E S
with n1 < n2 and such that d := n2 - n1 is as small as possible. (Here and
throughout we use the symbol := to mean 'defined to equal'.) Define for
r = 0, ... ,d-1

C { . I (nd+r) £ O}
r = ~ E : Pki > 0 or some n ~ .

Then Co U ... U Cd-1 = I, by irreducibility. Moreover, if p~~d+r) > 0 and

p~~d+8) > 0 for some r, S E {O, 1, ... ,d - I}, then, choosing m ~ 0 so that

p~";) > 0, we have p~~d+r+m) > 0 and p~~d+8+m) > 0 so r = s by minimality

of d. Hence we have a partition.

To prove (i) suppose p~j) > 0 and i E Cr. Choose m so that p~7d+r) > 0,

then p~7d+r+k) > 0 so j E Cr+n as required. By taking i = j = k we now
see that d must divide every element of S, in particular n1.

Now for nd ~ n~, we can write nd = qn1 + r for integers q ~ n1 and
o~ r ~ n1 - 1. Since d divides n1 we then have r = md for some integer
m and then nd = (q - m)n1 + mn2. Hence

and hence nd E S. To prove (ii) for i, j E Cr choose m1 and m2 so that

p~:l) > 0 and p~72) > 0, then
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whenever nd ~ n~. Since ml + m2 is then necessarily a multiple of d, we
are done. D

We call d the period of P. The theorem just proved shows in particular for
all i E I that d is the greatest common divisor of the set {n ~ 0 : p~~) > O}.
This is sometimes useful in identifying d.

Finally, here is a complete description of limiting behaviour for irre­
ducible chains. This generalizes Theorem 1.8.3 in two respects since we
require neither aperiodicity nor the existence of an invariant distribution.
The argument we use for the null recurrent case was discovered recently by
B. Fristedt and L. Gray.

Theorem 1.8.5. Let P be irreducible of period d and let Co, C1 , ... ,Cd-l
be the partition obtained in Theorem 1.8.4. Let A be a distribution with
LiECo Ai = 1. Suppose that (Xn)n~O is Markov(A, P). Then for r =
0,1, ... ,d - 1 and j E C r we have

P(Xnd+r = j) ~ dlmj as n ~ 00

where mj is the expected return time to j. In particular, for i E Co and
j E Cr we have

Proof

(nd+r) dl
Pij ~ mj as n ~ 00.

Step 1. We reduce to the aperiodic case. Set v = Apr, then by Theorem
1.8.4 we have

Set Yn = Xnd+r, then (Yn)n~O is Markov(v, pd) and, by Theorem 1.8.4, pd
is irreducible and aperiodic on Cr. For j E Cr the expected return time of
(Yn)n~O to j is mjld. So if the theorem holds in the aperiodic case, then

P(Xnd+r = j) = P(Yn = j) ~ dlmj as n ~ 00

so the theorem holds in general.

Step 2. Assume that P is aperiodic. If P is positive recurrent then 1/mj =

1rj, where 1r is the unique invariant distribution, so the result follows from
Theorem 1.8.3. Otherwise mj = 00 and we have to show that

P(Xn = j) ~ 0 as n ~ 00.
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If P is transient this is easy and we are left with the null recurrent
case.

Step 3. Assume that P is aperiodic and null recurrent. Then

00

:EPj(Tj > k) = lEj(Tj) = 00.

k=O

Given € > 0 choose K so that

Then, for n ~ K - 1

n

1 ~ :E P(Xk = j and X m 1= j for m = k + 1, ... ,n)
k=n-K+l

n

L P(Xk = j)Pj(Tj > n - k)
k=n-K+l

K-l

= :E P(Xn-k = j)Pj(Tj > k)
k=O

so we must have P(Xn - k = j) ~ €/2 for some k E {O, 1, ... ,K - I}.
Return now to the coupling argument used in Theorem 1.8.3, only now let

(Yn)n~O be Markov(j.t, P), where j.t is to be chosen later. Set Wn = (Xn,Yn).
As before, aperiodicity of (Xn)n~O ensures irreducibility of (Wn)n~O. If
(Wn)n~O is transient then, on taking j.t = A, we obtain

P(Xn = j)2 = P(Wn = (j, j)) ~ 0

as required. Assume then that (Wn)n~O is recurrent. Then, in the notation
of Theorem 1.8.3, we have P(T < 00) = 1 and the coupling argument shows
that

IP(Xn = j) - P(Yn = j)1 ~ 0 as n ~ 00.

We exploit this convergence by taking j.t = Apk for k = 1, ... ,K - 1, so
that P(Yn = j) = P(Xn +k = j). We can find N such that for n 2:: Nand
k = 1, ... ,K -1,

IP(Xn = j) - P(Xn+k = j)1 ::; ~ ·
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But for any n we can find k E {O, 1, ... ,K - I} such that P(Xn +k = j) ~
c/2. Hence, for n ~ N

P(Xn = j) ~ c.

Since c > 0 was arbitrary, this shows that lP(Xn = j) ~ 0 as n ~ 00, as
required. D

Exercises

1.8.1 Prove the claims (e), (f) and (g) made in example (v) of the Intro­
duction.

1.8.2 Find the invariant distributions of the transition matrices in Exercise
1.1.7, parts (a), (b) and (c), and compare them with your answers there.

1.8.3 A fair die is thrown repeatedly. Let X n denote the sum of the first n
throws. Find

lim P(Xn is a multiple of 13)
n--+-oo

quoting carefully any general theorems that you use.

1.8.4 Each morning a student takes one of the three books he owns from
his shelf. The probability that he chooses book i is Qi, where 0 < Qi < 1 for
i = 1,2,3, and choices on successive days are independent. In the evening
he replaces the book at the left-hand end of the shelf. If Pn denotes the
probability that on day n the student finds the books in the order 1,2,3,
from left to right, show that, irrespective of the initial arrangement of the
books, Pn converges as n ~ 00, and determine the limit.

1.8.5 (Renewal theorem). Let Y1 , Y2 , ••• be independent, identically
distributed random variables with values in {I, 2, ... }. Suppose that the
set of integers

{n : P(Y1 = n) > I}

has greatest common divisor 1. Set J-l = E(Y1 ). Show that the following
process is a Markov chain:

X n = inf{m ~ n: m = Y1 + ... + Yk for some k ~ O} - n.

Determine
lim lP(Xn = 0)

n--+-oo

and hence show that as n ~ 00

P(n = Y1 + ... + Yk for some k ~ 0) ~ 1/J-l.
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(Think of YI , Y2 , • •• as light-bulb lifetimes. A bulb is replaced when it fails.
Thus the limiting probability that a bulb is replaced at time n is 1/J-l. Al­
though this appears to be a very special case of convergence to equilibrium,
one can actually recover the full result by applying the renewal theorem to
the excursion lengths S~l), S~2), ... from state i.)

1.9 Time reversal

For Markov chains, the past and future are independent given the present.
This property is symmetrical in time and suggests looking at Markov chains
with time running backwards. On the other hand, convergence to equilib­
rium shows behaviour which is asymmetrical in time: a highly organised
state such as a point mass decays to a disorganised one, the invariant dis­
tribution. This is an example of entropy increasing. It suggests that if
we want complete time-symmetry we must begin in equilibrium. The next
result shows that a Markov chain in equilibrium, run backwards, is again a
Markov chain. The transition matrix may however be different.

Theorem 1.9.1. Let P be irreducible and have an invariant distribution
1r. Suppose that (Xn)O~n~N is Markov(1T', P) and set Yn = X N- n. Then

(Yn)O~n~N is MarkovCrr, P), where P = (Pij) is given by

1rjPji = 1riPij for all i, j

and P is also irreducible with invariant distribution 1r.

Proof. First we check that P is a stochastic matrix:

since 1r is invariant for P. Next we check that 1r is invariant for P:

L 1rjPji = L 1riPij = 1ri

JEI JEI

since P is a stochastic matrix.

We have

P(YO= io, YI = i l ,··· ,YN = iN)

= P(Xo = iN, Xl = iN-I,·.· ,XN = io)

= 1riNPiNiN -1 ... P i 1io = 1rioPioi1 ... PiN -1 iN
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so, by Theorem 1.1.1, (Yn)O~n~N is Markov(7r, P). Finally, since P is
irreducible, for each pair of states i, j there is a chain of states io =
i,il, ... ,in-1,in =j withpioil ... Pin-lin > O. Then

Pin in-l ... Pil io = 7rioPioil ... Pin-l in / 7rin > 0

so P is also irreducible. D

The chain (Yn)O~n~N is called the time-reversal of (Xn)O~n~N.

A stochastic matrix P and a measure A are said to be in detailed balance
if

AiPij = AjPji for all i, j.

Though obvious, the following result is worth remembering because, when
a solution A to the detailed balance equations exists, it is often easier to
find by the detailed balance equations than by the equation A = AP.

Lemma 1.9.2. If P and A are in detailed balance, then A is invariant for
P.

Proof· We have (AP)i = LjE! AjPji = LjE! AiPij = Ai· D

Let (Xn)n~O be Markov(A, P), with P irreducible. We say that (Xn)n~O

is reversible if, for all N ~ 1, (XN-n)O~n~N is also Markov(A, P).

Theorem 1.9.3. Let P be an irreducible stochastic matrix and let A be
a distribution. Suppose that (Xn)n~O is Markov(A, P). Then the following
are equivalent:

(a) (Xn)n~O is reversible;
(b) P and A are in detailed balance.

Proof. Both (a) and (b) imply that A is invariant for P. Then both (a) and
(b) are equivalent to the statement that P= P in Theorem 1.9.1. D

We begin a collection of examples with a chain which is not reversible.

Example 1.9.4

Consider the Markov chain with diagram:

1

3
2
3

2
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and 1r = (1/3, 1/3, 1/3) is invariant. Hence P = pT, the transpose of P.
But p is not symmetric, so P =I P and this chain is not reversible. A
patient observer would see the chain move clockwise in the long run: under
time-reversal the clock would run backwards!

Example 1.9.5

Consider the Markov chain with diagram:

P
.~

o 1

q P
II(.~

i-I i i+l

q
• II( •

M-l M

where 0 < P = 1 - q < 1. The non-zero detailed balance equations read

AiPi,i+l = Ai+lPi+l,i for i = 0, 1, ... ,M - 1.

So a solution is given by

A= ((p/q)i : i = 0, 1, ... ,M)

and this may be normalised to give a distribution in detailed balance with
P. Hence this chain is reversible.

If P were much larger than q, one might argue that the chain would tend
to move to the right and its time-reversal to the left. However, this ignores
the fact that we reverse the chain in equilibrium, which in this case would
be heavily concentrated near M. An observer would see the chain spending
most of its time near M and making occasional brief forays to the left,
which behaviour is symmetrical in time.

Example 1.9.6 (Random walk on a graph)

A gr.aph G is a countable collection of states, usually called vertices, some
of which are joined by edges, for example:
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1

4

2

3

Thus a graph is a partially drawn Markov chain diagram. There is a natural
way to complete the diagram which gives rise to the random walk on G.
The valency Vi of vertex i is the number of edges at i. We have to assume
that every vertex has finite valency. The random walk on G picks edges
with equal probability:

1

1
2

1
3

4

1
2

1
3

1
3

1
2

2

1
3

1
2

3

Thus the transition probabilities are given by

if (i, j) is an edge

otherwise.

We assume G is connected, so that P is irreducible. It is easy to see that
P is in detailed balance with V == (Vi : i E G). So, if the total valency
a == LiEG Vi is finite, then 1r == V / a is invariant and P is reversible.

Example 1.9.7 (Random chessboard knight)

A random knight makes each permissible move with equal probability. If it
starts in a corner, how long on average will it take to return?

This is an example of a random walk on a graph: the vertices are the
squares of the chessboard and the edges are the moves that the knight can
take:
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The diagram shows a part of the graph. We know by Theorem 1.7.7 and
the preceding example that

so all we have to do is identify valencies. The four corner squares have
valency 2, and the eight squares adjacent to the corners have valency 3.
There are 20 squares of valency 4, 16 of valency 6, and the 16 central
squares have valency 8. Hence

lEc(Tc) = 8 + 24 + 80 + 96 + 128 = 168.
2

Alternatively, if you enjoy solving sets of 64 simultaneous linear equations,
you might try finding 1r from 1rP == 1r, or calculating lEe (Te ) using Theorem

1.3.5!

Exercises

1.9.1 In each of the following cases determine whether the stochastic matrix
P, which you may assume is irreducible, is reversible:

(a) p ) .
l-q , (b)

(c) 1== {O,l, ... ,N} andp~J == 0 if Ij -il2:: 2;
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(d) I = {a, 1,2, ... } and POI = 1, Pi,i+l = P, Pi,i-l = 1 - P for i 2:: 1;

(e) Pij = Pji for all i,j E S.

1.9.2 Two particles X and Y perform independent random walks on the
graph shown in the diagram. So, for example, a particle at A jumps to B,
C or D with equal probability 1/3.

D p--_.......

B

C ~---"II

E

Find the probability that X and Y ever meet at a vertex in the following
cases:

(a) X starts at A and Y starts at B;

(b) X starts at A and Y starts at E. For I = B, DIet MI denote the
expected time, when both X and Y start at I, until they are once
again both at I. Show that 9MD = 16MB.

1.10 Ergodic theorem

Ergodic theorems concern the limiting behaviour of averages over time.
We shall prove a theorem which identifies for Markov chains the long-run
proportion of time spent in each state. An essential tool is the following
ergodic theorem for independent random variables which is a version of the
strong law of large numbers.

Theorem 1.10.1 (Strong law of large numbers). Let YI , Y2 , ... be
a sequence of independent, identically distributed, non-negative random
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variables with JE(Y1) = jj. Then

11']) (Yl + ... + Yn ) 1c -----~J_lasn~oo = .
n
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Proof. A proof for the case J_l < 00 may be found, for example, in Probability
with Martingales by David Williams (Cambridge University Press, 1991).
The case where J_l = 00 is a simple deduction. Fix N < 00 and set yJN) =

YnAN. Then

(N) (N)
Y1 + ···+ Yn > Y1 + ···+Yn _ ---t E(Y

1
/\ N)

n n
asn~oo

with probability one. As N i 00 we have E(YI A N) i J_l by monotone
convergence (see Section 6.4). So we must have, with probability 1

Y1 + ... + Yn
-----~oo

n
as n ~ 00. D

We denote by Vi (n) the number of visits to i before n:

n-l

Vi(n) = L l{xk=i}'
k=O

Then Vi (n )/ n is the proportion of time before n spent in state i. The
following result gives the long-run proportion of time spent by a Markov
chain in each state.

Theorem 1.10.2 (Ergodic theorem). Let P be irreducible and let .x
be any distribution. If (Xn)n?O is Markov(.x, P) then

]p> (Vi (n) ---t ...!- as n ---t 00) = 1
n mi

where mi = Ei(Ti ) is the expected return time to state i. Moreover, in the
positive recurrent case, for any bounded function f : I ~ lR we have

where

and where (7ri : i E I) is the unique invariant distribution.
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Proof. If P is transient, then, with probability 1, the total number Vi of
visits to i is finite, so

Vi(n) < Vi -t 0 = ...!-.
n - n mi

Suppose then that P is recurrent and fix a state i. For T = Ti we have
P(T < 00) = 1 by Theorem 1.5.7 and (XT+n)n~O is Markov(8i , P) and
independent of X o, Xl, . .. ,XT by the strong Markov property. The long­
run proportion of time spent in i is the same for (XT+n)n>O and (Xn)n>O,- -
so it suffices to consider the case A = bi.

Write sir) for the length of the rth excursion to i, as in Section 1.5. By

Lemma 1.5.1, the non-negative random variables S;l), 8;2), ... are indepen­

dent and identically distributed with Ei(S;r)) = mi. Now

S~l) + + S~V~(n)-l) < - 1
't ••• 't _n,

the left-hand side being the time of the last visit to i before n. Also

the left-hand side being the time of the first visit to i after n - 1. Hence

S;l) + ... + S;V~(n)-l) n S;l) + ... + S;V~(n))

Vi(n) :::; Vi(n) < Vi(n) (1.8)

By the strong law of large numbers

(S~l) + + S~n) )
JP> ~ •~. ~ -t mi as n -t 00 = 1

and, since P is recurrent

P(Vi(n) ~ 00 as n ~ 00) = 1.

So, letting n ~ 00 in (1.8), we get

JP> (Vi7n) -t mi as n -t 00) = 1,

which implies

P (Vi(n) -t ...!- as n -t (0) = 1.
n mi
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Assume now that (Xn)n~O has an invariant distribution (1ri : i E I). Let
I : I ~ lR be a bounded function and assume without loss of generality that
III ~ 1. For any J ~ I we have

I
n-l I ( )1 - Vi(n)

~ L !(Xk) -! = ~ -n- - 1ri Ii
k=O 'tEl

~ L IVi~n) - 7ril + L IVi~n) - 7ril
iEJ i~J

~ L IVi~n) - 7ril +L (Vi~n) +7ri)
iEJ i~J

" IVi(n) I "~ 2~ -n- - 1ri +2~1ri.

iEJ i~J

We proved above that

JP> (Vi~n) ---t 7ri as n ---t 00 for all i) = 1.

Given c > 0, choose J finite so that

and then N = N(w) so that, for n ~ N(w)

"I Vi(n) I~ -n- - 1ri < c/4.
iEJ

Then, for n ~ N(w), we have

< c,

which establishes the desired convergence. D

We consider now the statistical problem of estimating an unknown tran­
sition matrix P on the basis of observations of the corresponding Markov
chain. Consider, to begin, the case where we have N + 1 observations
(Xn)O~n~N. The log-likelihood function is given by

I(P) = log(..\xoPxoxl •• ,PXN-1XN) = L Nij logpij
i,jEl
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up to a constant independent of P, where Nij is the number of transitions
from i to j. A standard statistical procedure is to find the maximum likeli­
hood estimate P, which is the choice of P maximizing l(P). Since P must
satisfy the linear constraint E j Pij = 1 for each i, we first try to maximize

l (P) + 2: /-LiPij

i,jEI

and then choose (/-li : i E I) to fit the constraints. This is the method of
Lagrange multipliers. Thus we find

N-l N-l

Pij = L 1{Xn =i,Xn +1 =j}/ L l{xn =i}

n=O n=O

which is the proportion of jumps from i which go to j.

We now turn to consider the consistency of this sort of estimate, that is
to say whether Pij ~ Pij with probability 1 as N ~ 00. Since this is clearly
false when i is transient, we shall slightly modify our approach. Note that
to find Pij we simply have to maximize

2: N ij logPij

jEI

subject to E j Pij = 1: the other terms and constraints are irrelevant. Sup­
pose then that instead of N + 1 observations we make enough observations
to ensure the chain leaves state i a total of N times. In the transient case
this may involve restarting the chain several times. Denote again by N ij

the number of transitions from i to j.

To maximize the likelihood for (Pij : j E I) we still maximize

2: N ij logPij

jEI

subject to Ej Pij = 1, which leads to the maximum likelihood estimate

Pij = Nij/N.

But Nij = Y1 + ... + YN , where Yn = 1 if the nth transition from i is to
j, and Yn = 0 otherwise. By the strong Markov property Yl, . .. ,YN are
independent and identically distributed random variables with mean Pij.

So, by the strong law of large numbers

P(Pij ~ Pij as N ~ 00) = 1,

which shows that Pij is consistent.
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1.10.1 Prove the claim (d) made in example (v) of the Introduction.

1.10.2 A professor has N umbrellas. He walks to the office in the morning
and walks home in the evening. If it is raining he likes to carry an um­
brella and if it is fine he does not. Suppose that it rains on each journey
with probability p, independently of past weather. What is the long-run
proportion of journeys on which the professor gets wet?

1.10.3 Let (Xn)n~O be an irreducible Markov chain on I having an invariant
distribution Jr. For J ~ I let (Ym)m~O be the Markov chain on J obtained
by observing (Xn)n~Owhilst in J. (See Example 1.4.4.) Show that (Ym)m~O
is positive recurrent and find its invariant distribution.

1.10.4 An opera singer is due to perform a long series of concerts. Hav­
ing a fine artistic temperament, she is liable to pullout each night with
probability 1/2. Once this has happened she will not sing again until the
promoter convinces her of his high regard. This he does by sending flowers
every day until she returns. Flowers costing x thousand pounds, 0 ~ x ~ 1,
bring about a reconciliation with probability yIX. The promoter stands to
make £750 from each successful concert. How much should he spend on
flowers?

1.11 Appendix: recurrence relations

Recurrence relations often arise in the linear equations associated to Markov
chains. Here is an account of the simplest cases. A more specialized case
was dealt with in Example 1.3.4. In Example 1.1.4 we found a recurrence
relation of the form

Xn+l = aXn + b.

We look first for a constant solution X n = x; then x = ax + b, so provided
a =I 1 we must have x = b/(l - a). Now Yn = Xn - b/(l - a) satisfies
Yn+l = aYn, so Yn = anyo. Thus the general solution when a =I 1 is given
by

X n = Aan + b/ (1 - a)

where A is a constant. When a = 1 the general solution is obviously

Xn = Xo +nb.

In Example 1.3.3 we found a recurrence relation of the form

aXn+l + bXn + CXn-l = 0
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where a and c were both non-zero. Let us try a solution of the form X n = -Xn;

then a-X2 + b-X + c = O. Denote by 0: and {3 the roots of this quadratic. Then

Yn = Ao:n + B{3n

is a solution. If 0: =1= (3 then we can solve the equations

xo=A+B, xl=Ao:+B{3

so that Yo = Xo and Yl = Xl; but

for all n, so by induction Yn = Xn for all n. If 0: = {3 # 0, then

Yn = (A + nB)o:n

is a solution and we can solve

so that Yo = Xo and Yl = Xl; then, by the same argument, Yn = Xn for all
n. The case 0: = (3 = 0 does not arise. Hence the general solution is given
by

{
Ao:n + B{3n

X
n = (A + nB)an

if 0: # {3

if 0: = {3.

1.12 Appendix: asymptotics for n!

Our analysis of recurrence and transience for random walks in Section 1.6
rested heavily on the use of the asymptotic relation

n! rv Ayri(nje)n as n ~ 00

for some A E [1, 00). Here is a derivation.

We make use of the power series expansions for ItI < 1

10g(1 + t) = t - ~t2 + ~t3 - .

10g(1 - t) = -t - ~t2 - ~t3 - .

By subtraction we obtain

1 (l+t) 13 152 log 1 _ t = t + 3t +:5 t +....
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Set An = n!/(nn+l/2e-n) and an = logAn. Then, by a straightforward
calculation

1 (1+(2n+l)-1)
an - an+! = (2n + 1)2" log 1 _ (2n + 1)-1 - 1.

By the series expansion written above we have

{ Ill II}
an-an+! = (2n+1) (2n+1) +3"(2n+1)3 +5 (2n+1)5 + ... -1

1 1 1 1
= 3 (2n + 1)2 + 5 (2n + 1)4 + · ..

1{II}
::; 3" (2n + 1)2 + (2n + 1)4 + · · ·

1 1 1 1
3 (2n + 1)2 - 1 12n - 12(n + 1) .

It follows that an decreases and an - 1/(12n) increases as n ~ 00. Hence
an ~ a for some a E [0, 00) and hence An ~ A, as n ~ 00, where A = ea.
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Continuous-time Markov chains I

The material on continuous-time Markov chains is divided between this
chapter and the next. The theory takes some time to set up, but once up
and running it follows a very similar pattern to the discrete-time case. To
emphasise this we have put the setting-up in this chapter and the rest in the
next. If you wish, you can begin with Chapter 3, provided you take certain
basic properties on trust, which are reviewed in Section 3.1. The first three
sections of Chapter 2 fill in some necessary background information and are
independent of each other. Section 2.4 on the Poisson process and Section
2.5 on birth processes provide a gentle warm-up for general continuous­
time Markov chains. These processes are simple and particularly important
examples of continuous-time chains. Sections 2.6-2.8, especially 2.8, deal
with the heart of the continuous-time theory. There is an irreducible level
of difficulty at this point, so we advise that Sections 2.7 and 2.8 are read
selectively at first. Some examples of more general processes are given in
Section 2.9. As in Chapter 1 the exercises form an important part of the
text.

2.1 Q-matrices and their exponentials

In this section we shall discuss some of the basic properties of Q-matrices
and explain their connection with continuous-time Markov chains.

Let I be a countable set. A Q-matrix on I is a matrix Q = (qij : i,j E I)
satisfying the following conditions:
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(i) 0 ~ -qii < 00 for all i;

(ii) qij ~ 0 for all i =I j;

(iii) L qij = 0 for all i.
jEI

Thus in each row of Q we can choose the off-diagonal entries to be any non­
negative real numbers, subject only to the constraint that the off-diagonal
row sum is finite:

qi = Lqij < 00.

j#i

The diagonal entry qii is then -qi, making the total row sum zero.

A convenient way to present the data for a continuous-time Markov chain
is by means of a diagram, for example:

1

3 1 2

Each diagram then corresponds to a unique Q-matrix, in this case

Q = (~2 !1 ~)
2 1 -3

Thus each off-diagonal entry qij gives the value we attach to the (i, j) arrow
on the diagram, which we shall interpret later as the rate of going from i to
j. The numbers qi are not shown on the diagram, but you can work them
out from the other information given. We shall later interpret qi as the rate
of leaving i.

We may think of the discrete parameter space {O, 1,2, ... } as embedded
in the continuous parameter space [0,00). For P E (0,00) a natural way to
interpolate the discrete sequence (pn : n = 0,1,2, ... ) is by the function
(etq

: t ~ 0), where q = logp. Consider now a finite set I and a matrix
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P = (Pij : i,j E I). Is there a natural way to fill in the gaps in the discrete
sequence (pn : n = 0,1,2, ... )?

For any matrix Q = (qij : i, j E I), the series

converges componentwise and we denote its limit by eQ . Moreover, if two
matrices Q1 and Q2 commute, then

The proofs of these assertions follow the scalar case closely and are given
in Section 2.10. Suppose then that we can find a matrix Q with eQ = P.
Then

enQ = (eQ)n = p n

so (etQ : t ~ 0) fills in the gaps in the discrete sequence.

Theorem 2.1.1. Let Q be matrix on a finite set I. Set P(t) = etQ . Then
(P(t) : t ~ 0) has the following properties:

(i) P(s + t) = P(s)P(t) for all s, t (semigroup property);

(ii) (P(t) : t ~ 0) is the unique solution to the forward equation

~P(t) = P(t)Q, P(O) = I;

(iii) (P(t) : t ~ 0) is the unique solution to the backward equation

P(O) = I;

(iv) for k = 0,1,2, ... , we have

Proof. For any s, t E lR, sQ and tQ commute, so

esQ etQ = e(s+t)Q

proving the semigroup property. The matrix-valued power series

P(t) = f: (t~)k
k=O



2.1 Q-matrices and their exponentials 63

has infinite radius of convergence (see Section 2.10). So each component is
differentiable with derivative given by term-by-term differentiation:

, 00 tk- 1Qk
P (t) = L (k _ 1)! = P(t)Q = QP(t).

k=1

Hence P(t) satisfies the forward and backward equations. Moreover by
repeated term-by-term differentiation we obtain (iv). It remains to show
that P(t) is the only solution of the forward and backward equations. But
if M(t) satisfies the forward equation, then

.!!.-(M(t)e-tQ
) = (.!!.-M(t)) e-tQ + M(t) (.!!.-e- tQ

)
dt dt dt

= M(t)Qe- tQ + M(t)( -Q)e-tQ = 0

so M(t)e- tQ is constant, and so M(t) = P(t). A similar argument proves
uniqueness for the backward equation. D

The last result was about matrix exponentials in general. Now let us see
what happens to Q-matrices. Recall that a matrix P = (Pij : i, j E I) is
stochastic if it satisfies

(i) 0 ~ Pij < 00 for all i,j;

(ii) LPij = 1 for all i.
jEI

We recall the convention that in the limit t ~ 0 the statement f(t) = O(t)
means that f(t)/t ~ C for all sufficiently small t, for some C < 00. Later
we shall also use the convention that f(t) = o(t) means f(t)/t ~ 0 as t ~ o.

Theorem 2.1.2. A matrix Q on a finite set I is a Q-matrix if and only if
P(t) = etQ is a stochastic matrix for all t ~ o.

Proof. As t ! 0 we have

so qij ~ 0 for i =1= j if and only if Pij (t) ~ 0 for all i, j and t ~ 0 sufficiently
small. Since P(t) = P(t/n)n for all n, it follows that qij ~ 0 for i =1= j if
and only if Pij(t) ~ 0 for all i,j and all t ~ o.

If Q has zero row sums then so does Qn for every n:

""" (n) """ """ (n-1) """ (n-1) """ 0LJ qik = LJ LJ qij qjk = LJ qij LJ qjk = .
kEI kEI jEI jEI kEI
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00 t n (n)
LPij(t) = 1 + L I" Lqij = 1.n.
jEI n=l jEI

On the other hand, if LjE! Pij(t) = 1 for all t ~ 0, then

L qij = ~ I LPij(t) = O.
jEI t=O jEI

D

Now, if P is a stochastic matrix of the form eQ for some Q-matrix, we
can do some sort of filling-in of gaps at the level of processes. Fix some
large integer m and let (X~)n~O be discrete-time Markov(.x, eQ

/ m). We
define a process indexed by {n/m : n = 0,1,2, ... } by

Then (Xn : n = 0,1,2, ... ) is discrete-time Markov(.x, (eQ/m)m) (see Exer­
cise 1.1.2) and

Thus we can find discrete-time Markov chains with arbitrarily fine
grids {n/m : n = 0,1,2, ... } as time-parameter sets which give rise to
Markov(.x, P) when sampled at integer times. It should not then be too
surprising that there is, as we shall see in Section 2.8, a continuous-time
process (Xt)t;~o which also has this property.

To anticipate a little, we shall see in Section 2.8 that a continuous-time

Markov chain (Xt)t~O with Q-matrix Q satisfies

for all n = 0,1,2, ... , all times ° ~ to ~ ... ~ tn +l and all states
io, ... ,in +1 , where Pij(t) is the (i,j) entry in etQ . In particular, the tran­
sition probability from i to j in time t is given by

(Recall that := means 'defined to equal'.) You should compare this with
the defining property of a discrete-time Markov chain given in Section 1.1.
We shall now give some examples where the transition probabilities Pij(t)
may be calculated explicitly.
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Example 2.1.3

We calculate PII(t) for the continuous-time Markov chain with Q-matrix

Q = (~2 !1 ~)
2 1 -3

The method is similar to that of Example 1.1.6. We begin by writing down
the characteristic equation for Q:

o= det (x - Q) = x(x + 2) (x + 4).

This shows that Q has distinct eigenvalues 0, -2, -4. Then PII(t) has the
form

PII(t) = a + be-2t + ce-4t

for some constants a, band c. (This is because we could diagonalize Q by
an invertible matrix U:

Then

00)(-2t)k 0
o (-4t)k

~ ) U- I
,

e-4t

U- I

so PII(t) must have the form claimed.) To determine the constants we use

1 = PII (0) = a + b+ c,

-2 = qII = P~I (0) = -2b - 4c,

7 = qii) = P~I (0) = 4b + 16c,

so
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A A A...- .....---41.~~. ~.-----------..- ...- ..
o 1 2 N-l N

Q=

Example 2.1.4

We calculate Pij(t) for the continuous-time Markov chain with diagram
given above. The Q-matrix is

-A A
-A A

A
-A A

o
where entries off the diagonal and super-diagonal are all zero. The expo­
nential of an upper-triangular matrix is upper-triangular, so Pij(t) = 0 for
i > j. In components the forward equation P'(t) = P(t)Q reads

P~i(t) = -APii(t),

P~j(t) = -APij(t) + APi,j-l (t),

P~N(t) = APiN-l(t),

Pii (0) == 1,

Pij (0) == 0,

PiN(O) = 0,

for i < N,

for i < j < N,

for i < N.

We can solve these equations. First, pii(t) = e- At for i < N. Then, for
i <j < N

so, by induction
(At)j-i

Pij(t) = e->.t (j _ i)!'

If i = 0, these are the Poisson probabilities of parameter At. So, start­
ing from 0, the distribution of the Markov chain at time t is the same as
the distribution of min{yt, N}, where yt is a Poisson random variable of
parameter At.

Exercises

2.1.1 Compute Pll(t) for P(t) = etQ , where

Q = (~2 !4 ~).
2 1 -3
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2.1.2 Which of the following matrices is the exponential of a Q-matrix?
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(a) (~ ~) (b) (~ ~) (c) (~ ~).

What consequences do your answers have for the discrete-time Markov
chains with these transition matrices?

2.2 Continuous-time random processes

Let I be a countable set. A continuous-time random process

with values in I is a family of random variables X t : n ~ I. We are going
to consider ways in which we might specify the probabilistic behaviour (or
law) of (Xt)t~o. These should enable us to find, at least in principle,
any probability connected with the process, such as lP(Xt = i) or
lP(Xto = io, ... ,Xtn = in), or P(Xt = i for some t). There are subtleties in
this problem not present in the discrete-time case. They arise because, for
a countable disjoint union

whereas for an uncountable union Ut>o At there is no such rule. To avoid
these subtleties as far as possible we shall restrict our attention to processes
(Xt)t~O which are right-continuous. This means in this context that for all
wEn and t ~ 0 there exists € > 0 such that

for t ~ s ~ t + €.

By a standard result of measure theory, which is proved in Section 6.6,
the probability of any event depending on a right-continuous process can
be determined from its finite-dimensional distributions, that is, from the
probabilities

lP(Xto = io, X t1 = il, ,Xtn = in)

for n ~ 0, 0 ~ to ~ tl ~ ... ~ t n and i o, ,in E I. For example

P(Xt = i for some t E [0,00)) = 1- lim '""" P(Xq1 = ji, ... ,Xqn = jn)
n--+-oo L.J

jl ,... ,in=l=i

where ql, q2, . .. is an enumeration of the rationals.
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Every path t ~ Xt(w) of a right-continuous process must remain con­
stant for a while in each new state, so there are three possibilities for the
sorts of path we get. In the first case the path makes infinitely many jumps,
but only finitely many in any interval [0, t]:

• o

•

• o

~-

Jo = 0 1.1 t

The second case is where the path makes finitely many jumps and then
becomes stuck in some state forever:

•

Jo = 0 J.2 t

In the third case the process makes infinitely many jumps in a finite interval;
this is illustrated below. In this case, after the explosion time ( the process
starts up again; it may explode again, maybe infinitely often, or it may
not.
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• " . ...
.......-

• •
...-.--

Jo = 0

..........------e.

t

..-14----....._----....~~~~~

We call Jo, J1 , ... the jump times of (Xt)t~O and 8 1 ,82 , ... the holding
times. They are obtained from (Xt)t~O by

for n = 0,1, ... , where inf 0 = 00, and, for n = 1,2, ... ,

if I n -1 < 00

otherwise.

Note that right-continuity forces 8n > 0 for all n. If I n +1 = 00 for some
n, we define X oo = XJn , the final value, otherwise X oo is undefined. The
(first) explosion time ( is defined by

00

(= supJn = I:Sn.
n n==1

The discrete-time process (Yn)n~O given by Yn = X Jn is called the jump
process of (Xt)t~O, or the jump chain if it is a discrete-time Markov chain.
This is simply the sequence of values taken by (Xt)t~O up to explosion.

We shall not consider what happens to a process after explosion. So it
is convenient to adjoin to I a new state, 00 say, and require that X t = 00

if t ~ (. Any process satisfying this requirement is called minimal. The
terminology 'minimal' does not refer to the state of the process but to the
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interval of time over which the process is active. Note that a minimal
process may be reconstructed from its holding times and jump process.
Thus by specifying the joint distribution of 81,82, ... and (Yn)n~O we have
another 'countable' specification of the probabilistic behaviour of (Xt)t~o,

For example, the probability that X t = i is given by

00

IP(Xt = i) = L IP(Yn = i and I n :::; t < I n +1)
n=O

and

lP(Xt = i for some t E [0,00)) = lP(Yn = i for some n ~ 0).

2.3 Some properties of the exponential distribution

A random variable T : n ~ [0,00] has exponential distribution of parameter
-X (0 ~ -X < 00) if

lP(T > t) = e- At for all t ~ O.

We write T rv E(-X) for short. If -X > 0, then T has density function

The mean of T is given by

E(T) = 100

IP(T > t)dt = A-I.

The exponential distribution plays a fundamental role in continuous-time
Markov chains because of the following results.

Theorem 2.3.1 (Memoryless property). A random variable T: n ~
(0,00] has an exponential distribution if and only if it has the following
memoryless property:

lP(T> s + tiT> s) = lP(T > t) for all s, t ~ O.

Proof. Suppose T rv E(-X), then

P(T> s + t) e-A(s+t) -At
IP(T> s + tiT> s) = IP(T> s) = e->'s = e = IP(T > t).
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On the other hand, suppose T has the memoryless property whenever
JP>(T> s) > O. Then g(t) = JP>(T > t) satisfies

g(s + t) = g(s)g(t) for all s, t ~ O.

We assumed T > 0 so that g(l/n) > 0 for some n. Then, by induction

so g(l) = e-A for some 0 ::; A < 00. By the same argument, for integers
p,q ~ 1

g(p/q) = g(l/q)P = g(l)pjq

so g(r) = e- AT for all rationals r > O. For real t > 0, choose rationals
r, s > 0 with r ::; t ::; s. Since 9 is decreasing,

e-AT = g(r) ~ g(t) ~ g(s) = e- AS

and, since we can choose rand s arbitrarily close to t, this forces g(t) = e-At ,

so T rv E(A). 0

The next result shows that a sum of independent exponential random
variables is either certain to be finite or certain to be infinite, and gives a cri­
terion for deciding which is true. This will be used to determine whether or
not certain continuous-time Markov chains can take infinitely many jumps
in a finite time.

Theorem 2.3.2. Let 8 1 , 8 2 , . .. be a sequence ofindependent random vari­
ables with 8n rv E(An) and 0 < An < 00 for all n.

00 1 (00)
(i) If~ An < 00, then JP> ~ Sn < 00 = l.

00 1 (00)
(ii) If~ An = 00, then JP> ~ Sn = 00 = l.

Proof. (i) Suppose E~1 1/An < 00. Then, by monotone convergence

so
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(ii) Suppose instead that E~11/An = 00. Then rr~o(1+ 1/An) = 00.

By monotone convergence and independence

so

JP> (f Sn = 00) = 1.
n==l

D

The following result is fundamental to continuous-time Markov chains.

Theorem 2.3.3. Let I be a countable set and let Tk' k E I, be independent
random variables with Tk rv E(qk) and 0 < q := EkE! qk < 00. Set
T = infk Tk . Then this infimum is attained at a unique random value K of
k, with probability 1. Moreover, T and K are independent, with T rv E(q)
and lP(K = k) = qk/q.

Proof. Set K = k if Tk < T j for all j =I k, otherwise let K be undefined.
Then

lP(K = k and T ~ t)

= lP(Tk ~ t and Tj > Tk for all j =I k)

= 100

qke-qkBP(Tj > s for all j 1= k)ds

= (OO qke- qkB IT e-qjBds
it j#

1
00

- 8 qk - t= qke q ds = -e q .
t q

Hence lP(K = k for some k) = 1 and T and K have the claimed joint
distribution. D

The following identity is the simplest case of an identity used in Section
2.8 in proving the forward equations for a continuous-time Markov chain.

Theorem 2.3.4. For independent random variables S rv E(A) and R rv

E(jj) and for t ~ 0, we have

jjJP>(S ~ t < S + R) = AJP>(R ~ t < R+ S).
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Proof. We have
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from which the identity follows by symmetry. D

Exercises

2.3.1 Suppose Sand T are independent exponential random variables of
parameters Q and (3 respectively. What is the distribution of min{S, T}?
What is the probability that S :::; T? Show that the two events {S < T}
and {min{S, T} ~ t} are independent.

2.3.2 Let Tl, T2 , . .. be independent exponential random variables of pa­
rameter A and let N be an independent geometric random variable with

JP>(N = n) = (3(1 - (3)n-l, n = 1,2, ....

Show that T = 2::1 Ti has exponential distribution of parameter A(3.

2.3.3 Let 81, 82 , . .. be independent exponential random variables with
parameters AI, A2, . .. respectively. Show that AlSl is exponential of pa­
rameter 1.

Use the strong law of large numbers to show, first in the special case
An = 1 for all n, and then subject only to the condition sUPn An < 00, that

JP> (f Sn = 00) = 1 .
n=l

Is the condition sUPn An < 00 absolutely necessary?

2.4 Poisson processes

Poisson processes are some of the simplest examples of continuous-time
Markov chains. We shall also see that they may serve as building blocks
for the most general continuous-time Markov chain. Moreover, a Poisson
process is the natural probabilistic model for any uncoordinated stream of
discrete events in continuous time. So we shall study Poisson processes
first, both as a gentle warm-up for the general theory and because they
are useful in themselves. The key result is Theorem 2.4.3, which provides
three different descriptions of a Poisson process. The reader might well
begin with the statement of this result and then see how it is used in the
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theorems and examples that follow. We shall begin with a definition in
terms of jump chain and holding times (see Section 2.2). A right-continuous
process (Xt)t;~o with values in {O, 1,2, ... } is a Poisson process of rate A
(0 < A < 00) if its holding times 8 1, 82, . .. are independent exponential
random variables of parameter A and its jump chain is given by Yn = n.
Here is the diagram:

A A A A.. . .. . ~ . .. .
o 1 234

The associated Q-matrix is given by

-A A
-A A

Q=

By Theorem 2.3.2 (or the strong law of large numbers) we have
P(Jn ~ 00) = 1 so there is no explosion and the law of (Xt)t;~o is uniquely
determined. A simple way to construct a Poisson process of rate A is to
take a sequence 8 1 , 8 2 , . .. of independent exponential random variables of
parameter A, to set Jo = 0, I n = 81 + ... + 8n and then set

. .. . . ..5 : : : : ..- --

4 : -: :....................... •'---00········

3 ; :.... • 0,······ .: .. . . ..
.. .

2 : ~ : : .

. . ..1 ........... .••-------ec;> : : : .

tJ.4
O.-...o4l~---""'-----'-;'-----------_""""_--------"

Jo = (}
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The diagram illustrates a typical path. We now show how the memory­
less property of the exponential holding times, Theorem 2.3.1, leads to a
memoryless property of the Poisson process.

Theorem 2.4.1 (Markov property). Let (Xt)t~O be a Poisson process
of rate -X. Then, for any s ~ 0, (Xs+t - Xs)t~O is also a Poisson process of
rate -X, independent of(Xr : r:::; s).

Proof. It suffice~to prove the claim conditional on the event X s = i, for
each i ~ O. Set X t = X s+t - X s . We have

On this event
i

X r = L l{srSt} for r ::; s
j==1

and the holding times 81 ,82 , ... of (Xt)t~O are given by

81 = 8 i +1 - (s - Ji ), 8n = 8i+n for n ~

as shown in the diagram.

o
ill(

s

Recall that the holding times 81 ,82 , ... are independent E(A). Condition
on 81 , ... ,8i and {Xs = i}, then by the memoryless property of 8i +1

and independence, 81,82 , ... are themselves independent E(-X). Hence,
conditional on {Xs = i}, 81 ,82 , ... are independent E(-X), and independent
of 81 , ... ,8i . Hence, conditional on {Xs = i}, (Xt)t~O is a Poisson process
of rate A and independent of (Xr : r ~ s). D

In fact, we shall see in Section 6.5, by an argument in essentially the
same spirit that the result also holds with s replaced by any stopping time
T of (Xt)t~o,
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Theorem 2.4.2 (Strong Markov property). Let (Xt)t;~o be a Poisson
process oErate A and let T be a stopping time oE(Xt)t~o, Then, conditional
on T < 00, (XT+t - XT )t~O is also a Poisson process of rate A, independent
of(Xs:s~T).

Here is some standard terminology. If (Xt)t~O is a real-valued process,
we can consider its increment X t - X s over any interval (s, t]. We say that
(Xt)t~O has stationary increments if the distribution of X s+t - X s depends
only on t ~ O. We say that (Xt)t~O has independent increments if its
increments over any finite collection of disjoint intervals are independent.

We come to the key result for the Poisson process, which gives two condi­
tions equivalent to the jump chain/holding time characterization which we
took as our original definition. Thus we have three alternative definitions
of the same process.

Theorem 2.4.3. Let (Xt)t~O be an increasing, right-continuous integer­
valued process starting from O. Let 0 < A < 00. Then the following three
conditions are equivalent:

(a) (jump chain/holding time definition) the holding times 8 1 ,82 , ... of
(Xt)t~O are independent exponential random variables of parameter
A and the jump chain is given by Yn = n for all n;

(b) (infinitesimal definition) (Xt)t~O has independent increments and, as
h ! 0, uniformly in t,

IF(Xt+h - X t = 0) = 1 - Ah + o(h), IF(Xt+h - X t = 1) = Ah + o(h);

(c) (transition probability definition) (Xt)t~O has stationary independent
increments and, for each t, X t has Poisson distribution of parameter
At.

If (Xt)t~O satisfies any of these conditions then it is called a Poisson process
of rate A.

Proof. (a) => (b) If (a) holds, then, by the Markov property, for any t, h ~ 0,
the increment X t+h - X t has the same distribution as X h and is independent

of (Xs : s ~ t). So (Xt)t~O has independent increments and as h ! 0

lP(Xt+h - X t ~ 1) = lP(Xh ~ 1) = lP(J1 ~ h) = 1 - e-)..h = Ah + o(h),

lP(Xt+h - X t ~ 2) = lP(Xh ~ 2) = lP(J2 ~ h)

~ IF(81 ~ h and 82 ~ h) = (1 - e-Ah )2 = o(h),

which implies (b).
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(b) ::::} (c) If (b) holds, then, for i = 2,3, ... , we have P(Xt+h - X t = i) =
o(h) as h ! 0, uniformly in t. Set Pj(t) = P(Xt = j). Ther:, for j = 1,2, ... ,

j

Pj(t + h) = P(XHh = j) = L P(XHh - X t = i) P(Xt = j - i)
i==O

= (1 - Ah +o(h) )Pj(t) + (Ah + o(h))Pj-l (t) + o(h)

so

Pj(t + h~ - Pj(t) = ->'Pj(t) + >'Pj-l(t) + O(h).

Since this estimate is uniform in t we can put t = s - h to obtain for all
s,?-h

Now let h ! 0 to see that Pj(t) is first continuous and then differentiable
and satisfies the differential equation

By a simpler argument we also find

p~(t) = -APO(t).

Since Xo = 0 we have initial conditions

PO(O) = 1, Pj(O) = 0 for j = 1,2, ....

As we saw in Example 2.1.4, this system of equations has a unique solution
given by

(At)j
Pj(t) = e-At _.,_, j = 0,1,2, ....

J.

Hence X t rv P(At). If (Xt)(~O satisfies (b), then certainly (Xt)(~O has
independent increments, but also (Xs+t - Xs)t~O satisfies (b), so the above
argument shows X s+t - X s rv P(At), for any s, which implies (c).

(c) ::::} (a) There is a process satisfying (a) and we have shown that it must
then satisfy (c). But condition (c) determines the finite-dimensional distri­
butions of (Xt)t~O and hence the distribution of jump chain and holding
times. So if one process satisfying (c) also satisfies (a), so must every process
satisfying (c). D

The differential equations which appeared in the proof are really the
forward equations for the Poisson process. To make this clear, consider the
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possibility of starting the process from i at time 0, writing Pi as a reminder,
and set

Pij(t) = Pi(Xt = j).

Then, by spatial homogeneity Pij(t) = Pj-i(t), and we could rewrite the
differential equations as

p~O(t) = -APiO(t),

P~j(t) = APi,j-l(t) - APij(t),

or, in matrix form, for Q as above,

PiO(O) = 8iO ,

Pij(O) = 8ij

P'(t) = P(t)Q, P(O) = I.

Theorem 2.4.3 contains a great deal of information about the Poisson
process of rate A. It can be useful when trying to decide whether a given
process is a Poisson process as it gives you three alternative conditions to
check, and it is likely that one will be easier to check than another. On the
other hand it can also be useful when answering a question about a given
Poisson process as this question may be more closely connected to one defi­
nition than another. For example, you might like to consider the difficulties
in approaching the next result using the jump chain/holding time definition.

Theorem 2.4.4. If (Xt)t~O and (yt)t~O are independent Poisson processes
of rates A and J-l, respectively, then (Xt + yt)t~O is a Poisson process of rate
A+ J-l.

Proof. We shall use the infinitesimal definition, according to which (Xt)t~O

and (yt)t~O have independent increments and, as h ! 0, uniformly in t,

P(Xt+h - X t = 0) == 1 - Ah + o(h), P(Xt+h - X t == 1) == Ah + o(h),

P(¥t+h - ¥t = 0) = 1 - J-lh + o(h), P(¥t+h - yt = 1) = J-lh + o(h).

Set Zt = X t +yt. Then, since (Xt)t~O and (yt)t~O are independent, (Zt)t~O

has independent increments and, as h ! 0, uniformly in t,

P(Zt+h - Zt = 0) = P(Xt+h - X t = O)P(yt+h - yt = 0)

= (1 - Ah + o(h))(l - J-lh + o(h)) = 1 - (A + J-l)h + o(h),

lP(Zt+h - Zt = 1) = P(Xt+h - X t = l)lP(yt+h - yt == 0)

+ lP(Xt+h - X t == O)lP(yt+h - yt == 1)

== (Ah + o(h) )(1 - J-lh + o(h)) + (1 - Ah +o(h) )(J-lh +o(h))

= (A + J-l)h + o(h).

Hence (Zt)t~O is a Poisson process of rate A+ J-l. D
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Next we establish some relations between Poisson processes and the uni­
form distribution. Notice that the conclusions are independent of the rate
of the process considered. The results say in effect that the jumps of a
Poisson process are as randomly distributed as possible.

Theorem 2.4.5. Let (Xt)(~O be a Poisson process. Then, conditional on
(Xt)t~O having exactly one jump in the interval [s, s + t], the time at which
that jump occurs is uniformly distributed on [s, s + t].

Proof. We shall use the finite-dimensional distribution definition. By sta­
tionarity of increments, it suffices to consider the case s = O. Then, for

o~ u ~ t,

IF(J1 ~ u IX t = 1) = IF(J1 ~ u and X t = l)/lF(Xt = 1)

= IF(Xu = 1 and X t - Xu = O)/lF(Xt = 1)

= Aue-'xue-,X(t-u) /(Ate-'xt) = u/t. D

Theorem 2.4.6. Let (Xt)t~O be a Poisson process. Then, conditional on
the event {Xt = n}, the jump times J1 , ... ,In have joint density function

f(t1, . .. ,tn) = n! l{o~tl~ ...~tn~t}.

Thus, conditional on {Xt = n}, the jump times J1 , ... ,In have the same
distribution as an ordered sample of size n from the uniform distribution
on [O,t].

Proof. The holding times S1, . .. ,Sn+1 have joint density function

An+1 e-'x(Sl +...+Sn+l) 1{Sl ,... ,Sn+l ~O}

so the jump times J1, ... ,In+1 have joint density function

So for A ~ jRn we have

IF((J1, ... ,In) E A and X t = n) = IF((J1, ... ,In) E A and I n ~ t < I n+1)

= e-,Xt An1 1{O~tl~ ...~tn~t}dt1 ... dtn
(tl ,... ,tn)EA

and since IF(Xt = n) = e-,Xt An In! we obtain

as required. 0
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We finish with a simple example typical of many problems making use
of a range of properties of the Poisson process.

Example 2.4.7

Robins and blackbirds make brief visits to my birdtable. The probability
that in any small interval of duration h a robin will arrive is found to be
ph+o(h), whereas the corresponding probability for blackbirds is (3h+o(h).
What is the probability that the first two birds I see are both robins? What
is the distribution of the total number of birds seen in time t? Given that
this number is n, what is the distribution of the number of blackbirds seen
in time t?

By the infinitesimal characterization, the number of robins seen by time
t is a Poisson process (Rt)t~O of rate p, and the number of blackbirds is
a Poisson process (Bt)t~O of rate (3. The times spent waiting for the first
robin or blackbird are independent exponential random variables 8 1 and T1

of parameters p and (3 respectively. So a robin arrives first with probability
p/(p + (3) and, by the memoryless property of T1 , the probability that
the first two birds are robins is p2 / (p + (3)2. By Theorem 2.4.4 the total
number of birds seen in an interval of duration t has Poisson distribution
of parameter (p + (3)t. Finally

JP>(Bt = k I Rt + Bt = n) = JP>(Bt = k and Rt = n - k)/JP>(Rt + B t = n)

= (e- f3 (3k) (e- ppn
-

k
)/ (e- CP+f3 )(p+(3)n)

k! (n - k)! n!

= (~) (p~~)k (p:~)n-k

so if n birds are seen in time t, then the distribution of the number of
blackbirds is binomial of parameters nand {3/(p + (3).

Exercises

2.4.1 State the transition probability definition of a Poisson process. Show
directly from this definition that the first jump time J1 of a Poisson process
of rate A is exponential of parameter A.

Show also (from the same definition and without assuming the strong
Markov property) that

and hence that J2 - J1 is also exponential of parameter A and independent
of J1.
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2.4.2 Show directly from the infinitesimal definition that the first jump time
J1 of a Poisson process of rate A has exponential distribution of parameter
A.

2.4.3 Arrivals of the Number 1 bus form a Poisson process of rate one bus
per hour, and arrivals of the Number 7 bus form an independent Poisson
process of rate seven buses per hour.

(a) What is the probability that exactly three buses pass by in one hour?

(b) What is the probability that exactly three Number 7 buses pass by
while I am waiting for a Number I?

(c) When the maintenance depot goes on strike half the buses break down
before they reach my stop. What, then, is the probability that I wait
for 30 minutes without seeing a single bus?

2.4.4 A radioactive source emits particles in a Poisson process of rate A.
The particles are each emitted in an independent random direction. A
Geiger counter placed near the source records a fraction p of the particles
emitted. What is the distribution of the number of particles recorded in
time t?

2.4.5 A pedestrian wishes to cross a single lane of fast-moving traffic. Sup­
pose the number of vehicles that have passed by time t is a Poisson process
of rate A, and suppose it takes time a to walk across the lane. Assuming
that the pedestrian can foresee correctly the times at which vehicles will
pass by, how long on average does it take to cross over safely? [Consider
the time at which the first car passes.]

How long on average does it take to cross two similar lanes (a) when one
must walk straight across (assuming that the pedestrian will not cross if,
at any time whilst crossing, a car would pass in either direction), (b) when
an island in the middle of the road makes it safe to stop half-way?

2.5 Birth processes

A birth process is a generalization of a Poisson process in which the param­
eter A is allowed to depend on the current state of the process. The data
for a birth process consist of birth rates 0 ~ qj < 00, where j == 0,1,2, ....
We begin with a definition in terms of jump chain and holding times. A
minimal right-continuous process (Xt)(~O with values in {O, 1,2, ... } U {oo}
is a birth process of rates (qj : j ~ 0) if, conditional on Xo == i, its holding
times 8 1 ,82 , are independent exponential random variables of param-
eters qi, qi+1, , respectively, and its jump chain is given by Yn == i + n.
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ql q2 q3
~ . ~ . .. .

o 1 2 3 4

The flow diagram is shown above and the Q-matrix is given by:

Q=

Example 2.5.1 (Simple birth process)

Consider a population in which each individual gives birth after an expo­
nential time of parameter -X, all independently. If i individuals are present
then the first birth will occur after an exponential time of parameter iA.
Then we have i + 1 individuals and, by the memoryless property, the pro­
cess begins afresh. Thus the size of the population performs a birth process
with rates qi = i-X. Let X t denote the number of individuals at time t and
suppose X o = 1. Write T for the time of the first birth. Then

E(Xt ) = E(XtlT~t) + E(Xt lT>t)

= it ,xe-ASlE(XtIT = s )ds + e-At •

Put J-l(t) = E(Xt ), then E(Xt IT = s) = 2J-l(t - s), so

p,(t) = it 2,xe- AS p,(t - s)ds + e-At

and setting r = t - s

By differentiating we obtain

so the mean population size grows exponentially:
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t

Much of the theory associated with the Poisson process goes through
for birth processes with little change, except that some calculations can no
longer be made so explicitly. The most interesting new phenomenon present
in birth processes is the possibility of explosion. For certain choices of birth
rates, a typical path will make infinitely many jumps in a finite time, as
shown in the diagram. The convention of setting the process to equal 00

after explosion is particularly appropriate for birth processes!

· ..8 ~ : : :.. ~ .:•..................

7 ; : : :.. : .•..................
· .

6 ; : : :.. ~ •...................
· ..

5 : : : :..~ .

· "4 ~ : : ~.:-:: .

· ..3 : : ...-...0. : .:.: .

2 ~ ..............•~---lIQo"" .:.. : .:.:: .

1 ....................••----.....e~ : :.. :.:: .
0---41~------e--------'-----""'--"""-&....&o&_------..

Jo == 0

In fact, Theorem 2.3.2 tells us exactly when explosion will occur.

Theorem 2.5.2. Let (Xt)(~O be a birth process of rates (qj : j > 0),
starting from o.

00 1
(i) IfI: - < 00, then P(( < 00) = 1.

j==O qj

00 1
(ii) If:E - = 00, then P(( = 00) = 1.

j==O qj

Proof. Apply Theorem 2.3.2 to the sequence of holding times 8 1 ,82 ,. . .. D

The proof of the Markov property for- the Poisson process is easily
adapted to give the following generalization.
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Theorem 2.5.3 (Markov property). Let (Xt)(~O be a birth process of
rates (qj : j 2:: 0). Then, conditional on X s = i, (Xs+t)(~O is a birth process
of rates (qj : j ~ 0) starting from i and independent of (Xr : r ~ s).

We shall shortly prove a theorem on birth processes which generalizes the
key theorem on Poisson processes. First we must see what will replace the
Poisson probabilities. In Theorem 2.4.3 these arose as the unique solution
of a system of differential equations, which we showed were essentially the
forward equations. Now we can still write down the forward equation

P'(t) = P(t)Q, P(O) = I.

or, in components

and, for j = 1, 2, ...

Moreover, these equations still have a unique solution; it is just not as
explicit as before. For we must have

which can be substituted in the equation

P~1 ( t) = PiO (t )qo - Pi1 ( t )q1 , Pi1 ( 0) = 8i 1

and this equation solved to give

Now we can substitute for Pi1(t) in the next equation up the hierarchy and
find an explicit expression for Pi2(t), and so on.

Theorem 2.5.4. Let (Xt)t~O be an increasing, right-continuous process
with values in {O, 1,2, ... } U {oo}. Let 0 ~ qj < 00 for all j ~ o. Then the
following three conditions are equivalent:

(a) (jump chain/holding time definition) conditional on Xo = i, the hold­
ing times 81 ,82 , ... are independent exponential random variables of
parameters qi, qi+1, . .. respectively and the jump chain is given by
Yn = i + n for all n;
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(b) (infinitesimal definition) for all t, h ~ 0, conditional on X t = i, X t+h

is independent of (Xs : s ~ t) and, as h ! 0, uniformly in t,

IF(Xt+h = i I X t = i) = 1 - qih + o(h),

lP(Xt+h = i + 1 IX t = i) = qih + o(h);

(c) (transition probability definition) for all n = 0,1,2, ... , all times °~
to ~ ... ~ tn+l and all states io, ... ,in+l

where (pij(t) : i,j = 0,1,2, ... ) is the unique solution of the forward
equations.

If (Xt)t~O satisfies any of these conditions then it is called a birth process

of rates (qj : j ~ 0).

Proof. (a) => (b) If (a) holds, then, by the Markov property for any t, h ~ 0,
conditional on X t = i, X t+h is independent of (Xs : s ~ t) and, as h ! 0,
uniformly in t,

lP(Xt+h ~ i + 1 I X t = i) = lP(Xh ~ i + 1 I X o = i)

= IF(Jl ~ h I X o = i) = 1 - e-qih = qih + o(h),

and

IF(Xt+h ~ i + 2 I X t = i) = IF(Xh ~ i + 2 I Xo = i)

= IF(J2 ~ h I X o = i) ~ IF(Sl ~ hand S2 ~ h I X o = i)

= (1 - e-qih )(l - e-qi+1h ) = o(h),

which implies (b).

(b) => (c) If (b) holds, then certainly for k = i + 2, i + 3, ...

IF(Xt +h = k IX t = i) = o(h) as h ! 0, uniformly in t.

Set Pij(t) = IF(Xt = j I X o = i). Then, for j = 1,2, ...

Pij(t + h) = IF(Xt+h = j I X o = i)
j

= LJP>(Xt = k IX o = i)JP>(XHh = j IX t = k)
k==i

= Pij(t)(l - qjh + o(h)) +Pi,j-l(t)(qj-lh + o(h)) + o(h)
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As in the proof of Theorem 2.4.3, we can deduce that Pij(t) is differentiable
and satisfies the differential equation

By a simpler argument we also find

Thus (Pij(t) : i,j = 0,1,2, ... ) must be the unique solution to the forward
equations. If (Xt)t;~o satisfies (b), then certainly

but also (Xtn+t)t;~o satisfies (b), so

by uniqueness for the forward equations. Hence (Xt)t;~o satisfies (c).

(c) =* (a) See the proof of Theorem 2.4.3. D

Exercise

2.5.1 Each bacterium in a colony splits into two identical bacteria after
an exponential time of parameter -X, which then split in the same way but
independently. Let X t denote the size of the colony at time t, and suppose
X o = 1. Show that the probability generating function ¢(t) = E(zXt )

satisfies

Make a change of variables u = t - s in the integral and deduce that
d¢/dt = -X¢(¢ - 1). Hence deduce that, for q = 1 - e- At and n = 1,2, ...
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This section begins the theory of continuous-time Markov chains proper,
which will occupy the remainder of this chapter and the whole of the next.
The approach we have chosen is to introduce continuous-time chains in
terms of the joint distribution of their jump chain and holding times. This
provides the most direct mathematical description. It also makes possible
a number of constructive realizations of a given Markov chain, which we
shall describe, and which underlie many applications.

Let I be a countable set. The basic data for a continuous-time Markov
chain on I are given in the form of a Q-matrix. Recall that a Q-matrix on
I is any matrix Q = (qij : i, j E I) which satisfies the following conditions:

(i) 0 ~ -qii < 00 for all i;
(ii) qij ~ 0 for all i =I j;

(iii) L qij = 0 for all i.
JEI

We will sometimes find it convenient to write qi or q(i) as an alternative
notation for -qii.

We are going to describe a simple procedure for obtaining from a Q­
matrix Q a stochastic matrix IT. The jump matrix IT = (7rij : i, j E I) of Q
is defined by

{
qij / qi if j =I i and qi =I 0

7rij = 0 if j =I i and qi = 0,

7rii = {O ~f qi 1= 0
1 If qi = O.

This procedure is best thought of row by row. For each i E I we take,
where possible, the off-diagonal entries in the ith rovJ of Q and scale them
so they add up to 1, putting a 0 on the diagonal. This is only impossible
when the off-diagonal entries are all 0, then we leave them alone and put a
1 on the diagonal. As you will see in the following example, the associated
diagram transforms into a discrete-time Markov chain diagram simply by
rescaling all the numbers on any arrows leaving a state so they add up to
1.

Example 2.6.1

The Q-matrix

Q = (~2 ~1 ~)
2 1 -3
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has diagram:

2. Continuous-time Markov chains I

1

3 1 2

The jump matrix IT of Q is given by

II = ( ~
2/3

and has diagram:

1/2
o

1/3

1

3 1
3

2

Here is the definition of a continuous-time Markov chain in terms of its
jump chain and holding times. Recall that a minimal process is one which
is set equal to 00 after any explosion - see Section 2.2. A minimal right­
continuous process (Xt)t~O on I is a Markov chain with initial distribution
.x and generator matrix Q if its jump chain (Yn)n~O is discrete-time Mar­
kov(.x, IT) and if for each n ~ 1, conditional on yo, ... ,Yn - 1 , its holding
times Sl, ,Sn are independent exponential random variables of param-
eters q(Yo), ,q(Yn-1) respectively. We say (Xt)t~O is Markov(.x, Q) for
short. We can construct such a process as follows: let (Yn)n~O be discrete­
time Markov(.x, IT) and let T1 , T2 , ••• be independent exponential random
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variables of parameter 1, independent of (Yn)n~O. Set 8n = Tn/q(Yn- 1 ),

I n = 81 + ... + 8n and

{
Yn if I n ~ t < I n+1 for some n

Xt = 00 otherwise.

Then (Xt)t~O has the required properties.

We shall now describe two further constructions. You will need to un­
derstand these constructions in order to identify processes in applications
which can be modelled as Markov chains. Both constructions make direct
use of the entries in the Q-matrix, rather than proceeding first via the jump
matrix. Here is the second construction.

We begin with an initial state Xo = Yo with distribution .x, and with an
array (T~ : n ~ 1, j E I) of independent exponential random variables of
parameter 1. Then, inductively for n = 0,1,2, ... , if Yn = i we set

8~+1 = T~+l/qij, for j =I i,

Sn+l = ~~ S~+l'
J-r-'I,

y: _ {j if 8~+1 = 8n +1 < 00
n+1 - . ·f S

'l 1 n+1 = 00.

Then, conditional on Yn = i, the random variables 8~+1 are independent
exponentials of parameter qij for all j -=I i. So, conditional on Yn = i,
by Theorem 2.3.3, 8n+1 is exponential of parameter qi = Ej:j=i qij, Yn+1

has distribution (7rij : j E I), and 8n +1 and Yn +1 are independent, and
independent of yo, . .. ,Yn and 8 1 , ... ,8n , as required. This construction
shows why we call qi the rate of leaving i and qij the rate of going from i
to j.

Our third and final construction of a Markov chain with generator matrix
Q and initial distribution .x is based on the Poisson process. Imagine the
state-space I as a labyrinth of chambers and passages, each passage shut
off by a single door which opens briefly from time to time to allow you
through in one direction only. Suppose the door giving access to chamber
j from chamber i opens at the jump times of a Poisson process of rate qij
and you take every chance to move that you can, then you will perform
a Markov chain with Q-matrix Q. In more mathematical terms, we begin
with an initial state Xo = Yo with distribution .x, and with a family of
independent Poisson processes {(N;j)t~o : i,j E I,i =I j}, (N;j)t~o having
rate qij. Then set Jo = °and define inductively for n = 0,1,2, ...

I n+1 = inf{t > I n : Nrnj =I Nj:
j

for some j #lyn}

{

j if I n+1 < 00 and Njnj =I Njnj
Yn +1 = . . n+l n

'l If I n +1 = 00.
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The first jump time of (N;j)t~o is exponential of parameter qij. So, by
Theorem 2.3.3, conditional on Yo = i, J1 is exponential of parameter qi =

Lj#i qij, Y1 has distribution (7rij : j E I), and J1 and Y1 are independent.
Now suppose T is a stopping time of (Xt)t~o. If we condition on Xo and

on the processes (Ntkl)t~O for (k,l) =1= (i,j), which are independent of N;j,
then {T ~ t} depends only on (N;j : s ~ t). So, by the strong Markov
property of the Poisson process N;j := N!}+t - N!} is a Poisson process of
rate qij independent of (N;j : s ~ T), and independent of Xo and (Ntkl)t~O

for (k,l) =1= (i,j). Hence, conditional on T < 00 and XT = i, (XT+t)t~O

has the same distribution as (Xt)t~O and is independent of (Xs : s ~ T).
In particular, we can take T = I n to see that, conditional on I n < 00

and Yn = i, 8n+1 is exponential of parameter qi, Yn+1 has distribution
(7rij : j E I), and 8n +1 and Yn +1 are independent, and independent of
yo, ... ,Yn and 8 1 , ... ,8n· Hence (Xt)t~O is Markov(-X, Q) and, more­
over, (Xt)t~O has the strong Markov property. The conditioning on which
this argument relies requires some further justification, especially when the
state-space is infinite, so we shall not rely on this third construction in the
development of the theory.

2.7 Explosion

We saw in the special case of birth processes that, although each holding
time is strictly positive, one can run through a sequence of states with
shorter and shorter holding times and end up taking infinitely many jumps
in a finite time. This phenomenon is called explosion. Recall the notation
of Section 2.2: for a process with jump times Jo, J1, J2, ... and holding
times 8 1 , 8 2 , ... , the explosion time ( is given by

00

(= supJn = 2: Sn o

n n==l

Theorem 2.7.1. Let (Xt)t~O be Markov(-X, Q). Then (Xt)t~O does not
explode if anyone of the following conditions holds:

(i) I is finite;
(ii) sup qi < 00;

iEI
(iii) Xo = i, and i is recurrent for the jump chain.

Proof. Set Tn = q(Yn- 1 )Sn, then T1 , T2 , . .. are independent E(l) and in­
dependent of (Yn)n~O. In cases (i) and (ii), q = SUPi qi < 00 and

00



2. 7 Explosion 91

with probability 1. In case (iii), we know that (Yn)n~O visits i infinitely
often, at times N 1, N 2 , • •• , say. Then

00

qi( ~ L TN",+! = 00

m==l

with probability 1. D

We say that a Q-matrix Q is explosive if, for the associated Markov chain

Pi (( < 00) > 0 for some i E I.

Otherwise Q is non-explosive. Here as in Chapter 1 we denote by Pi the
conditional probability Pi(A) = P(AIXo = i). It is a simple consequence
of the Markov property for (Yn)n>O that under Pi the process (Xt)t>o is- -
Markov(8i , Q). The result just proved gives simple conditions for non-
explosion and covers many cases of interest. As a corollary to the next
result we shall obtain necessary and sufficient conditions for Q to be explo­
sive, but these are not as easy to apply as Theorem 2.7.1.

Theorem 2.7.2. Let (Xt)t~O be a continuous-time Markov chain with
generator matrix Q and write ( for the explosion time of (Xt)t>o. Fix
() > 0 and set Zi = Ei(e-(}(). Then Z = (Zi : i E I) satisfies: -

(i) IZil ~ 1 for all i;
(ii) Qz = Oz.

Moreover, ifz also satisfies (i) and (ii), then Zi ~ Zi for all i.

Proof. Condition on Xo = i. The time and place of the first jump are
independent, J 1 is E(qi) and

Moreover, by the Markov property of the jump chain at time n = 1, con­
ditional on XJ1 = k, (XJl+t)t~O is Markov(8k,Q) and independent of J1 •

So

and
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Recall that qi = -qii and q(Jrik = qik. Then

(0 - qii)Zi = L qikZk
k#i

so

OZi = Lqikzk
kEI

and so z satisfies (i) and (ii). Note that the same argument also shows that

Suppose that z also satisfies (i) and (ii), then, in particular

for all i. Suppose inductively that

z. < E·(e-9Jn )
~ - ~

then, since z satisfies (ii)

Hence Zi ~ E i (e- 9Jn ) for all n. By monotone convergence

as n ~ 00, so Zi ~ Zi for all i. D

Corollary 2.7.3. For each (J > 0 the following are equivalent:

(a) Q is non-explosive;
(b) Qz = (Jz and IZil ~ 1 for all i imply z = o.

Proof. If (a) holds then JP>i(( = 00) = 1 so Ei(e-9() = o. By the theorem,
Qz = (Jz and Izl ~ 1 imply Zi ~ E i (e-9(), hence z ~ 0, by symmetry z ~ 0,
and hence (b) holds. On the other hand, if (b) holds, then by the theorem
Ei(e-9() = 0 for all i, so JP>i(( = 00) = 1 and (a) holds. D
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Exercise

2.7.1 Let (Xt )t;~o be a Markov chain on the integers with transition rates

qi,i+l = Aqi, qi,i-l = J-lqi

and qij = °if Ij - il ~ 2, where A + J-l = 1 and qi > °for all i. Find for all
integers i:

(a) the probability, starting from 0, that X t hits i;

(b) the expected total time spent in state i, starting from 0.

In the case where J-l = 0, write down a necessary and sufficient condition
for (Xt)t;~o to be explosive. Why is this condition necessary for (Xt)t~O to
be explosive for all J-l E [0,1/2)?

Show that, in general, (Xt)t~O is non-explosive if and only if one of the
following conditions holds:

(i) A = J-l;

(ii) A > J-l and E~l 1/qi = 00;

(iii) A < J-l and E~ll/q-i= 00.

2.8 Forward and backward equations

Although the definition of a continuous-time Markov chain in terms of its
jump chain and holding times provides a clear picture of the process, it does
not answer some basic questions. For example, we might wish to calculate
IPi(Xt = j). In this section we shall obtain two more ways of characterizing
a continuous-time Markov chain, which will in particular give us a means
to find IPi(Xt = j). As for Poisson processes and birth processes, the
first step is to deduce the Markov property from the jump chain/holding
time definition. In fact, we shall give the strong Markov property as this
is a fundamental result and the proof is not much harder. However, the
proof of both results really requires the precision of measure theory, so we
have deferred it to Section 6.5. If you want to understand what happens,
Theorem 2.4.1 on the Poisson process gives the main idea in a simpler
context.

Recall that a random variable T with values in [0,00] is a stopping time of
(Xt)t~O if for each t E [0,00) the event {T ~ t} depends only on (Xs : s ~ t).

Theorem 2.8.1 (Strong Markov property). Let (Xt)t~O be
Markov(A, Q) and let T be a stopping time of (Xt)t~o. Then, conditional
on T < 00 and XT = i, (XT+t)t~O is Markov(8i , Q) and independent of
(Xs : s ~ T).

We come to the key result for continuous-time Markov chains. We shall
present first a version for the case of finite state-space, where there is a
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simpler proof. In this case there are three alternative definitions, just as for
the Poisson process.

Theorem 2.8.2. Let (Xt)t;~o be a right-continuous process with values in
a finite set I. Let Q be a Q-matrix on I with jump matrix II. Then the
following three conditions are equivalent:

(a) (jump chain/holding time definition) conditional on Xo = i, the
jump chain (Yn)n~O of (Xt)t~O is discrete-time Markov(8i , IT) and for
each n ~ 1, conditional on yo, . .. ,Yn - 1 , the holding times 8 1 , ... ,8n

are independent exponential random variables of parameters
q(Yo), ... ,q(Yn - 1 ) respectively;

(b) (infinitesimal definition) for all t, h ~ 0, conditional on X t = i, Xt+h
is independent of (Xs : s ~ t) and, as h ! 0, uniformly in t, for all j

(c) (transition probability definition) for all n = 0, 1, 2, ... , all times °::;
to ~ t1 ~ ... ~ tn +1 and all states io, ... ,in +1

where (Pij (t) : i, j E I, t ~ 0) is the solution of the forward equation

P'(t) = P(t)Q, P(o) = I.

If (Xt)t;~o satisfies any of these conditions then it is called a Markov chain
with generator matrix Q. We say that (Xt)(~O is Markov(>.., Q) for short,
where>.. is the distribution of X o.

Proof. (a) =* (b) Suppose (a) holds, then, as h ! 0,

and for j =I i we have

JP>i(Xh = j) ~ JP>(J1 ~ h, Y1 = j, 8 2 > h)

= (1 - e-qih)7rije-qjh = qijh + o(h).

Thus for every state j there is an inequality
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and by taking the finite sum over j we see that these must in fact be
equalities. Then by the Markov property, for any t, h ~ 0, conditional on
X t = i, X t+h is independent of (Xs : s ~ t) and, as h ! 0, uniformly in t

(b) :::} (c) Set Pij(t) = lFi(Xt = j) = IF(Xt = j I X o = i). If (b) holds, then
for all t, h ~ 0, as h ! 0, uniformly in t

Pij(t + h) = LlPi(Xt = k)IP(XHh = j IXt = k)
kEI

= LPik(t)(8kj + qkjh + o(h)).
kEI

Since I is finite we have

Pij(t + h~ - Pij(t) = LPik(t)qkj + O(h)

kEI

so, letting h ! 0, we see that Pij(t) is differentiable on the right. Then by
uniformity we can replace t by t - h in the above and let h ! °to see first
that Pij(t) is continuous on the left, then differentiable on the left, hence
differentiable, and satisfies the forward equations

p~/t) = LPik(t)qkj, Pij(O) = 8ij .
kEI

Since I is finite, Pij(t) is then the unique solution by Theorem 2.1.1. Also,
if (b) holds, then

and, moreover, (b) holds for (Xtn+t)(~O so, by the above argument,

proving (c).

(c) :::} (a) See the proof of Theorem 2.4.3. D

We know from Theorem 2.1.1 that for I finite the forward and backward
equations have the same solution. So in condition (c) of the result just
proved we could replace the forward equation with the backward equation.
Indeed, there is a slight variation of the argument from (b) to (c) which
leads directly to the backward equation.
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The deduction of (c) from (b) above can be seen as the matrix version
of the following result: for q E lR we have

(1 + ~ + o(~))n -4 eq as n -4 00.

Suppose (b) holds and set

Pij(t, t + h) = P(Xt+h = j I X t = i);

then P(t, t + h) = (Pij(t, t + h) : i,j E I) satisfies

P(t, t + h) = I + Qh + o(h)

and

P(O,t)=p(o,~)p(~,~)... p((n~l)t,t) = (I+t~ +o(~))n.

Some care is needed in making this precise, since the o(h) terms, though
uniform in t, are not a priori identical. On the other hand, in (c) we see
that

P(O, t) = etQ
.

We turn now to the case of infinite state-space. The backward equation
may still be written in the form

P'(t) = QP(t), P(O) = I

only now we have an infinite system of differential equations

P~j(t) = L qikPkj(t), Pij(O) = 15ij
kEI

and the results on matrix exponentials given in Section 2.1 no longer apply.
A solution to the backward equation is any matrix (pij(t) : i,j E I) of
differentiable functions satisfying this system of differential equations.

Theorem 2.8.3. Let Q be a Q-matrix. Then the backward equation

P'(t) = QP(t), P(O) = I

has a minimal non-negative solution (P(t) : t 2: 0). This solution forms a

matrix semigroup

P(s)P(t) = P(s + t) for all s, t ~ O.

We shall prove this result by a probabilistic method in combination with
Theorem 2.8.4. Note that if I is finite we must have P(t) = etQ by Theorem
2.1.1. We call (P(t) : t ~ 0) the minimal non-negative semigroup associated
to Q, or simply the semigroup of Q, the qualifications minimal and non­
negative being understood.

Here is the key result for Markov chains with infinite state-space. There
are just two alternative definitions now as the infinitesimal characterization
become problematic for infinite state-space.
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(2.2)

Theorem 2.8.4. Let (Xt)(~O be a minimal right-continuous process with
values in I. Let Q be a Q-matrix on I with jump matrix IT and semigroup
(P(t) : t ~ 0). Then the following conditions are equivalent:

(a) (jump chain/holding time definition) conditional on X o = i, the
jump chain (Yn)n~O of (Xt)t~O is discrete-time Markov(8i, II) and for
each n ~ 1, conditional on yo, . .. ,Yn - 1 , the holding times 8 1 , ... ,8n

are independent exponential random variables of parameters
q(Yo), ... ,q(Yn- 1 ) respectively;

(b) (transition probability definition) for all n = 0,1,2, ... , all times 0 ~
to ~ tl ~ ... ~ tn+l and all states io, il, ... ,in+l

If (Xt)t~O satisfies any of these conditions then it is called a Markov chain
with generator matrix Q. We say that (Xt)t~O is Markov (A, Q) for short,
where A is the distribution of X o.

Proof of Theorems 2.8.3 and 2.8.4. We know that there exists a process
(Xt)t~O satisfying (a). So let us define P(t) by

Pij(t) =JP>i(Xt =j).

Step 1. We show that P(t) satisfies the backward equation.

Conditional on Xo = i we have J 1 rv E(ql) and X J1 rv (7rik : k E I).
Then conditional on J 1 = sand X J1 = k we have (X8+t)t~O rv

Markov(8k, Q). So

and

JP>i(J1 ::; t, XJI = k, X t = j) = I t

qie-QiS7rikPkj(t - s)ds.

Therefore

Pij(t) = JP>i(Xt = j, t < J1) + LJP>i(J1 ::; t, XJl = k, X t = j)
k#i

= e-Qit8ij + 2: t qie-QiS7rikPkj(t - s)ds. (2.1)
k#i Jo

Make a change of variable u = t - s in each of the integrals, interchange
sum and integral by monotone convergence and multiply by eqit to obtain

eQitpij(t) = 8ij + t L qieQiU7rikPkj(u)du.
Jo k#i
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This equation shows, firstly, that Pij (t) is continuous in t for all i, j.
Secondly, the integrand is then a uniformly converging sum of continuous
functions, hence continuous, and hence Pij (t) is differentiable in t and sat­
isfies

eqit(qiPij(t) + P~j(t)) = L qieqit7rikPkj(t).
k#i

Recall that qi = -qii and qik = qi'lrik for k =I i. Then, on rearranging, we
obtain

P~j(t) = L qikPkj(t)
kEI

(2.3)

so P(t) satisfies the backward equation.

The integral equation (2.1) is called the integral form of the backward
equation.

Step 2. We show that if P(t) is another non-negative solution of the back­
ward equation, then P(t) ~ P(t), hence P(t) is the minimal non-negative
solution.

The argument used to prove (2.1) also shows that

JP>i(Xt =j,t < I n +l)

= e-qit15ij + L rt qie-QiS7rikJP>k(Xt-s = j, t - s < In)ds.
k=li Jo (2.4)

On the other hand, if P(t) satisfies the backward equation, then, by revers­
ing the steps from (2.1) to (2.3), it also satisfies the integral form:

If P(t) 2 0, then

for all i, j and t.

Let us suppose inductively that

for all i, j and t,

then by comparing (2.4) and (2.5) we have

for all i, j and t,
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and the induction proceeds. Hence

99

for all i, j and t.

Step 3. Since (Xt)t~O does not return from 00 we have

Pij(S + t) = lPi(Xs+t = j) = LlPi(XS+t = j I X s = k)lPi(Xs = k)
kEI

= :ElPi(Xs = k)lPk(Xt = j) = :EPik(S)Pkj(t)
kEI kEI

by the Markov property. Hence (P(t) : t ~ 0) is a matrix semigroup. This
completes the proof of Theorem 2.8.3.

Step 4. Suppose, as we have throughout, that (Xt)t~O satisfies (a). Then,
by the Markov property

P(Xtn+1 = in+1 IXto = io, ... ,Xtn = in)

= Pin (Xtn+l-tn = in+1) = Pinin+l (tn+l - tn)

so (Xt)t~O satisfies (b). We complete the proof of Theorem 2.8.4 by the
usual argument that (b) must now imply (a) (see the proof of Theorem
2.4.3, (c) :::} (a)). D

So far we have said nothing about the forward equation in the case of
infinite state-space. Remember that the finite state-space results of Section
2.1 are no longer valid. The forward equation may still be written

P'(t) = P(t)Q, P(O) = I,

now understood as an infinite system of differential equations

p~/t) = LPik(t)qkj, Pij(O) = 8ij .
kEI

A solution is then any matrix (pij(t) : i,j E I) of differentiable functions
satisfying this system of equations. We shall show that the semigro~p

(P(t) : t ~ 0) of Q does satisfy the forward equations, by a probabilistic
argument resembling Step 1 of the proof of Theorems 2.8.3 and 2.8.4. This
time, instead of conditioning on the first event, we condition on the last
event before time t. The argument is a little longer because there is no
reverse-time Markov property to give the conditional distribution. We need
the following time-reversal identity, a simple version of which was given in
Theorem 2.3.4.
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Lemma 2.8.5. We have

qinJP(Jn ~ t < I n+1 IYo = io, Y1 = i1, ... ,Yn = in)

= qioJP(Jn ~ t < I n+1 IYo = in,· .. , Yn- 1 = iI, Yn = io).

Proof· Conditional on Yo = i o, ... ,Yn = in, the holding times 8 1 , ... ,8n+1

are independent with 8k rv E(qik_l). So the left-hand side is given by

{ qin exp{-qin(t - Sl - · · · - sn)} IT qik-l exp{-qik-l Sk}dsk
Jt:!..(t) k=l

where Ll(t) = {(SI, ... ,sn) : SI + ... + Sn ~ t and SI, ... ,8n ~ O}. On
making the substitutions Ul = t - 81 - ... - Sn and Uk = 8 n-k+2, for
k = 2, ... ,n, we obtain

qinJP(Jn ~ t < I n+1 IYo = i o,· .. ,Yn = in)

= ( qio exp{ -qio(t - U1 - · .. - Un)} IT qin-k+l exp{ -qin-k+l Uk}duk
Jt:!..(t) k=l

= qioJP(Jn ~ t < I n+1 IYo = in, . .. ,Yn- 1 = iI, Yn = io). D

Theorem 2.8.6. The minimal non-negative solution (P(t) : t 2: 0) of the
backward equation is also the minimal non-negative solution of the forward
equation

P'(t) = P(t)Q, P(O) = I.

Proof. Let (Xt)t~O denote the minimal Markov chain with generator matrix
Q. By Theorem 2.8.4

00

= L LJP>i(Jn ::; t < In+i, Yn- 1 = k, Yn = j).
n==O k=j:j

Now by Lemma 2.8.5, for n ~ 1, we have

JPi(Jn ~ t < I n+1 IYn- 1 = k, Yn = j)

= (qi/qj)JPj(Jn ~ t < I n+1 IY1 = k, Yn = i)

= (qi/Qj) it qje-QjBJP>k(Jn_1 ::; t - S < I n IYn-1 = i)ds

= qiI t

e-QjB (qk/qi)JP>i (In-1 ::; t - s < I n IYn- 1 = k)ds
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where we have used the Markov property of (Yn)n~O for the second equality.
Hence

Pij(t) = 8ije-qit + f '2: it JP>i(Jn-l ::; t - s < I n IYn - 1 = k)
n=lki=i 0

X IPi(Yn - 1 = k, Yn = j)Qke-qj8ds

00 ft
= 8ije-qit + L L io JP>i(Jn-l ::; t - s < I n , Yn - 1 = k)qk'lrkje-qjSds

n=lki=i 0

= 8ije-qit + t '2:Pik(t - s)qkje-qjSds (2.6)
io k#j

where we have used monotone convergence to interchange the sum and
integral at the last step. This is the integral form of the forward equation.
Now make a change of variable u = t - s in the integral and multiply by
eqjt to obtain

(2.7)

We know by equation (2.2) that eqitpik(t) is increasing for all i, k. Hence
either

'2:Pik(U)qkj converges uniformly for u E [0, t]
ki=i

or

LPik(U)qkj = 00 for all u ~ t.
ki=j

The latter would contradict (2.7) since the left-hand side is finite for all t,
so it is the former which holds. We know from the backward equation that
Pii (t) is continuous for all i, j; hence by uniform convergence the integrand
in (2.7) is continuous and we may differentiate to obtain

P~j(t) + Pij(t)qj = '2:Pik(t)qkj.
ki=i

Hence P(t) solves the forward equation.

To establish minimality let us suppose that Pij(t) is another solution of
the forward equation; then we also have
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A small variation of the argument leading to (2.6) shows that, for n ~ 0

Pi(Xt = j, t < I n +1 )

= 8ije-qit + L (t IP\(Xt = j, t < In)qkje-QjBds. (2.8)
k#jJo

If P(t) ~ 0, then

P(Xt = j, t < Jo) = 0 ~ Pij (t) for all i, j and t.

Let us suppose inductively that

then by comparing (2.7) and (2.8) we obtain

and the induction proceeds. Hence

Exercises

2.8.1 Two fleas are bound together to take part in a nine-legged race on the
vertices A, B, C of a triangle. Flea 1 hops at random times in the clockwise
direction; each hop takes the pair from one vertex to the next and the times
between successive hops of Flea 1 are independent random variables, each
with with exponential distribution, mean 1/A. Flea 2 behaves similarly,
but hops in the anticlockwise direction, the times between his hops having
mean 1/Il. Show that the probability that they are at A at a given time
t > 0 (starting from A at time t = 0) is

2.8.2 Let (Xt)t;~o be a birth-and-death process with rates An = nA and
Iln = nil, and assume that Xo = 1. Show that h(t) = P(Xt = 0) satisfies
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and deduce that if A =I J-l then

2.9 Non-minimal chains
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This book concentrates entirely on processes which are right-continuous
and minimal. These are the simplest sorts of process and, overwhelmingly,
the ones of greatest practical application. We have seen in this chapter
that we can associate to each distribution A and Q-matrix Q a unique
such process, the Markov chain with initial distribution A and generator
matrix Q. Indeed we have taken the liberty of defining Markov chains to be
those processes which arise in this way. However, these processes do not by
any means exhaust the class of memoryless continuous-time processes with
values in a countable set I. There are many more exotic possibilities, the
general theory of which goes very much deeper than the account given in
this book. It is in the nature of things that these exotic cases have received
the greater attention among mathematicians. Here are some examples to
help you imagine the possibilities.

Example 2.9.1

Consider a birth process (Xt)t~O starting from 0 with rates qi = 2i for i ~ o.
We have chosen these rates so that

00 00

Lq:;l = L2-i < 00

i=O i=O

which shows that the process explodes (see Theorems 2.3.2 and 2.5.2). We
have until now insisted that X t = 00 for all t 2 (, where ( is the explosion
time. But another obvious possibility is to start the process off again from
o at time (, and do the same for all subsequent explosions. An argument
based on the memoryless property of the exponential distribution shows
that for 0 ~ to ~ . . . ~ tn +1 this process satisfies

for a semigroup of stochastic matrices (P(t) : t ~ 0) on I. This is the
defining property for a more general class of Markov chains. Note that
the chain is no longer determined by A and Q alone; the rule for bringing
(Xt)t~O back into I after explosion also has to be given.
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Example 2.9.2

We make a variation on the preceding example. Suppose now that the jump
chain of (Xt)t~O is the Markov chain on Z which moves one step away from
o with probability 2/3 and one step towards 0 with probability 1/3, and
that Yo = O. Let the transition rates for (Xt)t~O be qi = 21il for i E Z. Then
(Xt)t~O is again explosive. (A simple way to see this using some results of
Chapter 3 is to check that (Yn)n~O is transient but (Xt)t~O has an invariant
distribution - by solution of the detailed balance equations. Then Theorem
3.5.3 makes explosion inevitable.) Now there are two ways in which (Xt)t~O

can explode, either X t ~ -00 or X t ~ 00.

The process may again be restarted at 0 after explosion. Alternatively,
we may choose the restart randomly, and according to the way that explo­
sion occurred. For example

if X t ~ -00 as t i (
if X t ~ 00 as t i (

where Z takes values ±1 with probability 1/2.

Example 2.9.3

The processes in the preceding two examples, though no longer minimal,
were at least right-continuous. Here is an altogether more exotic example,
due to P. Levy, which is not even right-continuous. Consider

for n ~ 0

and set I = UnDn. With each i E Dn\Dn- 1 we associate an independent
exponential random variable Si of parameter (2n )2. There are 2n -

1 states
in (Dn\Dn-l) n [0,1), so, for all i E I

and

Now define

if L Sj :::; t < L Sj for some i E I
j<i j~i

otherwise.
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This process runs through all the dyadic rationals i E I in the usual order.
It remains in i E D n \Dn - 1 for an exponential time of parameter 1. Between
any two distinct states i and j it makes infinitely many visits to 00. The
Lebesgue measure of the set of times t when X t = 00 is zero. There is a
semigroup of stochastic matrices (P(t) : t ~ 0) on I such that, for 0 ~ to ~

... ~ tn+l

In particular, P(Xt = 00) = 0 for all t ~ O. The details may be found in
Markov Chains by D. Freedman (Holden-Day, San Francisco, 1971).

We hope these three examples will serve to suggest some of the possibil­
ities for more general continuous-time Markov chains. For further reading,
see Freedman's book, or else Markov Chains with Stationary Transition
Probabilities by K.-L. Chung (Springer, Berlin, 2nd edition, 1967), or Dif­
fusions, Markov Processes and Martingales, Vol 1: Foundations by L. C. G.
Rogers and D. Williams (Wiley, Chichester, 2nd edition, 1994).

2.10 Appendix: matrix exponentials

Define two norms on the space of real-valued N x N -matrices

IQI = sup IQvl/lvl, IIQlloo = sup Iqijl·
v#O i,j

Obviously, IIQlloo is finite for all Q and controls the size of the entries in
Q. We shall show that the two norms are equivalent and that IQI is well
adapted to sums and products of matrices, which IIQlloo is not.

Lemma 2.10.1. We have

(a) IIQlloo ~ IQI ~ NIIQlloo;
(b) IQl + Q21 ~ IQll + IQ21 and IQIQ21 ~ IQIIIQ21·

Proof. (a) For any vector v we have IQvl ~ IQllvl. In particular, for the
vector Cj = (0, ... ,1, ... ,0), with 1 in the jth place, we have IQcjl ~ IQI.
The supremum defining IIQlloo is achieved, at j say, so

IIQII~ ~ L(qij)2 = IQcjl2 ~ IQI2.
i
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On the other hand

2. Continuous-time Markov chains I

IQvI 2
= ~ (~qijVj) 2

~ ~ (~ IIQllooIVjl) 2

= NIIQII~ (~ IVjl) 2

and, by the Cauchy-Schwarz inequality

(b) For any vector v we have

I(QI + Q2)vl ~ IQIV I+ IQ2V l ~ (IQll + IQ21)1vl,
IQIQ2V l ~ IQI11Q2V l ~ IQIIIQ21Ivl· D

Now for n = 0,1,2, ... , consider the finite sum

n Qk
E(n) = L kf'

k=O

For each i and j, and m ~ n, we have

I(E(n) - E(m))iil ~ IIE(n) - E(m)lloo ~ IE(n) - E(m)1
n Qk

Lkf
k=m+l

n IQl k

< '" ­- LJ k!·
k=m+l

Since IQI ~ NllQlloo < 00, E~o IQl k /k! converges by the ratio test, so

n IQl k

'" - ~OLJ k!
k=m+l

as m,n ~ 00.
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Hence each component of E(n) forms a Cauchy sequence, which therefore
converges, proving that

CX) Qk
e

Q
= L kf

k=O

is well defined and, indeed, that the power series

(
t Q ) .. _ ~ (tQ)fj

e '1,) - L.-J k!
k=O

has infinite radius of convergence for all i,j. Finally, for two commuting
matrices Q1 and Q2 we have
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Continuous-time Markov chains II

This chapter brings together the discrete-time and continuous-time theo­
ries, allowing us to deduce analogues, for continuous-time chains, of all the
results given in Chapter 1. All the facts from Chapter 2 that are necessary
to understand this synthesis are reviewed in Section 3.1. You will require
a reasonable understanding of Chapter 1 here, but, given such an under­
standing, this chapter should look reassuringly familiar. Exercises remain
an important part of the text.

3.1 Basic properties

Let I be a countable set. Recall that a Q-matrix on I is a matrix Q =

(qij : i,j E I) satisfying the following conditions:

(i) 0 ~ -qii < 00 for all i;

(ii) qij 2 0 for all i =I j;

(iii) L qij = 0 for all i.
jEI

We set qi = q(i) = -qii. Associated to any Q-matrix is a jump matrix
IT = (7rij : i,j E I) given by

1r.. _ { qij / qi if j =I i and qi =I 0
~J - 0 if j =I i and qi = 0,

7r.. _ {o if qi =I 0
~~ - 1 if qi = o.

Note that II is a stochastic matrix.
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A sub-stochastic matrix on I is a matrix P = (Pij : i, j E I) with non­
negative entries and such that

LPij ::; 1 for all i.
jEI

Associated to any Q-matrix is a semigroup (P(t) : t 2 0) of sub-stochastic
matrices P(t) = (Pij(t) : i,j E I). As the name implies we have

P(s)P(t) = P(s + t) for all s, t 2 o.

You will need to be familiar with the following terms introduced in Sec­
tion 2.2: minimal right-continuous random process, jump times, holding
times, jump chain and explosion. Briefly, a right-continuous process (Xt)t~O

runs through a sequence of states Yo, Y1 , Y2 , . .. , being held in these states
for times 81 ,82 ,83 , ... respectively and jumping to the next state at times
J1, J2 , J3 ,· ... Thus I n = 8 1 +... + 8n. The discrete-time process (Yn)n~O

is the jump chain, (8n)n>1 are the holding times and (In)n>1 are the jump- -
times. The explosion time ( is given by

00

( = '""" 8n = lim I n .L.J n--+-oo
n=l

For a minimal process we take a new state 00 and insist that X t = 00 for
all t 2 (. An important point is that a minimal right-continuous process is
determined by its jump chain and holding times.

The data for a continuous-time Markov chain (Xt)t~O are a distribution
-X and a Q-matrix Q. The distribution -X gives the initial distribution, the
distribution of X o. The Q-matrix is known as the generator matrix of
(Xt)t~O and determines how the process evolves from its initial state. We
established in Section 2.8 that there are two different, but equivalent, ways
to describe how the process evolves.

The first, in terms of jump chain and holding times, states that

(a) (Yn)n~O is Markov(-X, IT);

(b) conditional on Yo = i o, ... ,Yn- 1 = in-I, the holding times 8 1 , ... ,Sn
are independent exponential random variables of parameters

qio ' . .. ,qin -1 .

Put more simply, given that the chain starts at i, it waits there for an
exponential time of parameter qi and then jumps to a new state, choosing
state j with probability 1rij. It then starts afresh, forgetting what has gone
before.
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The second description, in terms of the semigroup, states that the finite­
dimensional distributions of the process are given by

(c) for all n = 0,1,2, ... , all times 0 ~ to ~ tl ~ ... ~ tn+l and all states
io, iI, . .. ,in +1

Again, put more simply, given that the chain starts at i, by time t it is
found in state j with probability Pij (t). It then starts afresh, forgetting
what has gone before. In the case where

Pioo(t) := 1 - :EPij(t) > 0
jEI

the chain is found at 00 with probability Pi00 (t). The semigroup P(t) is re­
ferred to as the transition matrix of the chain and its entries Pij (t) are the
transition probabilities. This description implies that for all h > 0 the dis­
crete skeleton (Xnh)n~O is Markov(.x, P(h)). Strictly, in the explosive case,
that is, when P(t) is strictly sub-stochastic, we should say Markov(~,P(h)),
where ~ and P(h) are defined on IU{oo}, extending.x and P(h) by ~oo = 0
and Pooj(h) = O. But there is no danger of confusion in using the simpler
notation.

The information coming from these two descriptions is sufficient for most
of the analysis of continuous-time chains done in this chapter. Note that
we have not yet said how the semigroup P(t) is associated to the Q-matrix
Q, except via the process! This extra information will be required when
we discuss reversibility in Section 3.7. So we recall from Section 2.8 that
the semigroup is characterized as the minimal non-negative solution of the
backward equation

P'(t) = QP(t), P(O) = I

which reads in components

P~j(t) = L qikPkj(t), Pij(O) = 8ij .
kEI

The semigroup is also the minimal non-negative solution of the forward
equation

P'(t) = P(t)Q, P(O) = I.

In the case where I is finite, P(t) is simply the matrix exponential etQ
, and

is the unique solution of the backward and forward equations.



3.2 Class structure

3.2 Class structure

111

A first step in the analysis of a continuous-time Markov chain (Xt)t~O is to
identify its class structure. We emphasise that we deal only with minimal
chains, those that die after explosion. Then the class structure is simply
the discrete-time class structure of the jump chain (Yn)n~O, as discussed in
Section 1.2.

We say that i leads to j and write i ~ j if

lPi(Xt = j for some t ~ 0) > o.

We say i communicates with j and write i ~ j if both i ~ j and j ~
i. The notions of communicating class, closed class, absorbing state and
irreducibility are inherited from the jump chain.

Theorem 3.2.1. For distinct states i and j the following are equivalent:

(i) i ~j;
(ii) i ~ j for the jump chain;

(iii) Qioilqili2 ... Qin-lin > 0 for some states io,iI, ... ,in with io = i,
in = j;

(iv) Pij(t) > 0 for all t > 0;
(v) Pij(t) > 0 for some t > o.

Proof. Implications (iv) => (v) => (i) => (ii) are clear. If (ii) holds, then
by Theorem 1.2.1, there are states io, i I , ... ,in with io = i, in = j and
'1rioi l '1rili2 ... '1rin -lin > 0, which implies (iii). If qij > 0, then

for all t > 0, so if (iii) holds, then

Pij (t) ~ Pioil (tin) ... Pin-lin (tin) > 0

for all t > 0, and (iv) holds. D

Condition (iv) of Theorem 3.2.1 shows that the situation is simpler than
in discrete-time, where it may be possible to reach a state, but only after a
certain length of time, and then only periodically.

3.3 Hitting times and absorption probabilities

Let (Xt)t>o be a Markov chain with generator matrix Q. The hitting time
of a subset A of I is the random variable D A defined by
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with the usual convention that inf 0 = 00. We emphasise that (Xt)t>o is
minimal. So if H A is the hitting time of A for the jump chain, then -

{HA < oo} = {DA < oo}

and on this set we have

D A = JHA.

The probability, starting from i, that (Xt)t~O ever hits A is then

When A is a closed class, hf is called the absorption probability. Since the
hitting probabilities are those of the jump chain we can calculate them as
in Section 1.3.

Theorem 3.3.1. The vector of hitting probabilities hA = (hf : i E I) is
the minimal non-negative solution to the system of linear equations

Proof. Apply Theorem 1.3.2 to the jump chain and rewrite (1.3) in terms
ofQ. D

The average time taken, starting from i, for (Xt)t~O to reach A is given
by

In calculating kf we have to take account of the holding times so the rela­
tionship to the discrete-time case is not quite as simple.

1 1 2 2

1

3

3 3

2

4
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(3.1)

Example 3.3.2

Consider the Markov chain (Xt)t~O with the diagram given on the preceding
page. How long on average does it take to get from 1 to 4?

Set ki = E i (time to get to 4). On starting in 1 we spend an average time
ql1 = 1/2 in 1, then jump with equal probability to 2 or 3. Thus

k 1 = ~ + ~ k 2 + ~ k3

and similarly

k 2 = ~ + ~ k 1 + ~ k 3 , k 3 = ~ + ~ k 1 + ~ k 2 .

On solving these linear equations we find k 1 = 17/12.

Here is the general result. The proof follows the same lines as Theorem
1.3.5.

Theorem 3.3.3. Assume that qi > 0 for all i fj. A. The vector of expected
hitting times kA = (kt : i E I) is the minimal non-negative solution to the
system of linear equations

{
kt = 0 for i E A

- LjEI qijkf = 1 for i fj. A.

Proof. First we show that k A satisfies (3.1). If Xo = i E A, then D A = 0,
so kt = o. If X o = i fj. A, then D A ~ J1 , so by the Markov property of the
jump chain

so

kt = Ei(DA) = Ei(J1 )+LE(DA-J1 IY1 = j)IP\(Yl = j) = q;l+L 'lrij k1
j#i j#i

and so

- Lqijk1 = 1.
JEI

Suppose now that Y = (Yi : i E I) is another solution to (3.1). Then
kf = Yi = 0 for i E A. Suppose i fj. A, then

-1 '"' -1 '"' (-1 '"' )Yi = qi +~ 'lrijYj = qi +~ 'lrij qj +~ 'lrjkYk

j~A j~A k~A

= Ei(Sl) + Ei (S2 1{HA:2:2}) + L L'lrij'lrjkYk.
j~A k~A
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By repeated substitution for y in the final term we obtain after n steps

Yi = lEi(Sd + ... + lEi (Sn 1{HA:2:n}) + L ... L 1riil .. · 1rin-dnYin·
jl~A jn~A

So, if y is non-negative

where we use the notation HA /\ n for the minimum of H A and n. Now

so, by monotone convergence, Yi ~ E i (DA) = kf, as required. D

Exercise

3.3.1 Consider the Markov chain on {I, 2, 3, 4} with generator matrix

Q= (0~
1/6
o

1/2
-1/2

o
o

1/2
o

-1/3
o

1~4)
1/6
o.

Calculate (a) the probability of hitting 3 starting from 1, (b) the expected
time to hit 4 starting from 1.

3.4 Recurrence and transience

Let (Xt)t~O be Markov chain with generator matrix Q. Recall that we insist
(Xt)t~O be minimal. We say a state i is recurrent if

JP>i({t ~ 0: X t = i} is unbounded) = 1.

We say that i is transient if

JP>i({t ~ 0 : X t = i} is unbounded) = O.

Note that if (Xt)t~O can explode starting from i then i is certainly not
recurrent. The next result shows that, like class structure, recurrence and
transience are determined by the jump chain.
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Theorem 3.4.1. We have:

(i) if i is recurrent for the jump chain (Yn)n~O, then i is recurrent for
(Xt)t~O;

(ii) if i is transient for the jump chain, then i is transient for (Xt)t~O;

(iii) every state is either recurrent or transient;

(iv) recurrence and transience are class properties.

Proof. (i) Suppose i is recurrent for (Yn)n~O. If X o = i then (Xt)t~O does
not explode and I n ~ 00 by Theorem 2.7.1. Also X(Jn) = Yn = i infinitely
often, so {t ~ 0 : X t = i} is unbounded, with probability 1.

(ii) Suppose i is transient for (Yn)n~O. If X o = i then

N = sup{n ~ 0 : Yn = i} < 00,

so {t ~ 0: X t = i} is bounded by J(N +1), which is finite, with probability
1, because (Yn : n ~ N) cannot include an absorbing state.

(iii) Apply Theorem 1.5.3 to the jump chain.

(iv) Apply Theorem 1.5.4 to the jump chain. D

The next result gives continuous-time analogues of the conditions for
recurrence and transience found in Theorem 1.5.3. We denote by Ti the
first passage time of (Xt)t~O to state i, defined by

Ti(w) = inf{t ~ J1 (w) : Xt(w) = i}.

Theorem 3.4.2. The following dichotomy holds:

(i) if qi = 0 or IPi(Ti < 00) = 1, then i is recurrent and Jooo
Pii(t)dt = 00;

(ii) ifqi > 0 and IPi(Ti < 00) < 1, then i is transient and Jooo
Pii(t)dt < 00.

Proof. If qi = 0, then (Xt)t~O cannot leave i, so i is recurrent, Pii(t) = 1
for all t, and Jooo

Pii(t)dt = 00. Suppose then that qi > o. Let Ni denote
the first passage time of the jump chain (Yn)n~O to state i. Then

IPi(Ni < 00) = IPi(Ti < 00)

so i is recurrent if and only if IPi(Ti < 00) = 1, by Theorem 3.4.1 and the
corresponding result for the jump chain.

Write 1r}j) for the (i,j) entry in rrn. We shall show that

1
00 1 00

_ (n)
pii(t)dt - --:- L 1rii

o q1, n=O
(3.2)

so that i is recurrent if and only if Jooo
Pii(t)dt = 00, by Theorem 3.4.1 and

the corresponding result for the jump chain.
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To establish (3.2) we use Fubini's theorem (see Section 6.4):

00

= lEi L Sn+l 1{Yn=i}
n=O

00 1 00

= L lEi (Sn+l IYn = i)JP>i(Yn = i) = --:- L 1I"i~)· 0
n=O ~ n=O

Finally, we show that recurrence and transience are determined by any
discrete-time sampling of (Xt)(~o.

Theorem 3.4.3. Let h > 0 be given and set Zn = X nh .

(i) If i is recurrent for (Xt)(~O then i is recurrent for (Zn)n~O.

(ii) If i is transient for (Xt)t~O then i is transient for (Zn)n~O.

Proof. Claim (ii) is obvious. To prove (i) we use for nh ~ t < (n + l)h the
estimate

which follows from the Markov property. Then, by monotone convergence

and the result follows by Theorems 1.5.3 and 3.4.2. D

Exercise

3.4.1 Customers arrive at a certain queue in a Poisson process of rate A.
The single 'server' has two states A and B, state A signifying that he is 'in
attendance' and state B that he is having a tea-break. Independently of
how many customers are in the queue, he fluctuates between these states
as a Markov chain Y on {A, B} with Q-matrix

(-a a)
(3 -(3 .

The total service time for any customer is exponentially distributed with
parameter J-l and is independent of the chain Y and of the service times of
other customers.
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Describe the system as a Markov chain X with state-space
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An signifying that the server is in state A and there are n people in the
queue (including anyone being served) and Bn signifying that the server is
in state B and there are n people in the queue.

Explain why, for some fJ in (0,1], and k = 0,1,2, ... ,

Show that (fJ - 1) f (fJ) = 0, where

By considering f(l) or otherwise, prove that X is transient if 1l(3 < A(a+(3),
and explain why this is intuitively obvious.

3.5 Invariant distributions

Just as in the discrete-time theory, the notions of invariant distribution
and measure play an important role in the study of continuous-time Markov
chains. We say that A is invariant if

AQ=O.

Theorem 3.5.1. Let Q be a Q-matrix with jump matrix IT and let A be
a measure. The following are equivalent:

(i) A is invariant;
(ii) IlIT = Il where Ili = Aiqi.

Proof· We have qi ('lrij - bij) = qij for all i, j, so

(Jl(II - I))j = :EJli(1rij - 8ij ) = :E,xiqij = (,xQk D
iEI iEI

This tie-up with measures invariant for the jump matrix means that we
can use the existence and uniqueness results of Section 1.7 to obtain the
following result.
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Theorem 3.5.2. Suppose that Q is irreducible and recurrent. Then Q has
an invariant measure A which is unique up to scalar multiples.

Proof. Let us exclude the trivial case I = {i}; then irreducibility forces
qi > 0 for all i. By Theorems 3.2.1 and 3.4.1, II is irreducible and recurrent.
Then, by Theorems 1.7.5 and 1.7.6, II has an invariant measure jj, which is
unique up to scalar multiples. So, by Theorem 3.5.1, we can take Ai = jji/qi
to obtain an invariant measure unique up to scalar multiples. D

Recall that a state i is recurrent if qi = 0 or lPi (Ti < 00) = 1. If qi = 0
or the expected return time mi = Ei(Ti) is finite then we say i is positive
recurrent. Otherwise a recurrent state i is called null recurrent. As in the
discrete-time case positive recurrence is tied up with the existence of an

invariant distribution.

Theorem 3.5.3. Let Q be an irreducible Q-matrix. Then the following
are equivalent:

(i) every state is positive recurrent;

(ii) some state i is positive recurrent;

(iii) Q is non-explosive and has an invariant distribution A.
Moreover, when (iii) holds we have mi = l/(Aiqi) for all i.

Proof. Let us exclude the trivial case I = {i}; then irreducibility forces
qi > 0 for all i. It is obvious that (i) implies (ii). Define J-li = (J-l; : j E I)
by

fTil\(

f.L~ = Ei 10 1{xs=j}ds,

where Ti /\ ( denotes the minimum of Ti and (. By monotone convergence,

L f.L; = Ei(Ti 1\ ().
jEI

Denote by N i the first passage time of the jump chain to state i. By Fubini's
theorem

00

f.L; = Ei L Sn+l 1{Yn=j,n<Nd
n=O

00

= LEi(Sn+l IYn =j)Ei (l{Yn=j,n<Ni })

n=O
00

= ~lE· '""" 1 .qJ ~ L.J {Yn=J,n<Ni }

n=O

Ni-l

= q;l Ei L l{Yn=j} = ,j/qj
n=O
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where, in the notation of Section 1.7, ,,; is the expected time in j between
visits to i for the jump chain.

Suppose (ii) holds, then i is certainly recurrent, so the jump chain is
recurrent, and Q is non-explosive, by Theorem 2.7.1. We know that "ill ="i by Theorem 1.7.5, so J-liQ = 0 by Theorem 3.5.1. But J-li has finite total
mass

L Jl; = Ei(Ti) = mi

jEI

so we obtain an invariant distribution A by setting Aj = J-l;/mi.

On the other hand, suppose (iii) holds. Fix i E I and set Vj =
Ajqj/(Aiqi); then Vi = 1 and vll = v by Theorem 3.5.1, so Vj ~ ,,; for
all j by Theorem 1.7.6. So

mi = LJl; = L ,;/qj ~ L Vj/Qj
jEI jEI jEI

= 2: Aj/(Aiqi) = l/(Aiqi) < 00

jEI

showing that i is positive recurrent.

To complete the proof we return to the preceding calculation armed
with the knowledge that Q is recurrent, hence 11 is recurrent, Vj = ,,; and
mi = l/(Aiqi) for all i. D

The following example is a caution that the existence of an invariant
distribution for a continuous-time Markov chain is not enough to guarantee
positive recurrence, or even recurrence.

Example 3.5.4

Consider the Markov chain (Xt)(~O on Z+ with the following diagram,
where qi > 0 for all i and where 0 < A = 1 - J-l < 1:

1

AqO
...---~--.......- - - - - -o i-I i i+1

The jump chain behaves as a simple random walk away from 0, so (Xt)(~O

is recurrent if A ~ J-l and transient if A > J-l. To compute an invariant
measure v it is convenient to use the detailed balance equations

for all i, j.
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Look ahead to Lemma 3.7.2 to see that any solution is invariant. In this
case the non-zero equations read

for all i.

So a solution is given by Vi = q:;l(A/Il)i. If the jump rates qi are constant
then v can be normalized to produce an invariant distribution precisely
when A < Il.

Consider, on the other hand, the case where qi = 2i for all i and
1 < AIIl < 2. Then v has finite total mass so (Xt)t~O has an invariant
distribution, but (Xt)t~O is also transient. Given Theorem 3.5.3, the only
possibility is that (Xt)t~O is explosive.

The next result justifies calling measures A with AQ = 0 invariant.

Theorem 3.5.5. Let Q be irreducible and recurrent, and let A be a mea­
sure. Let s > 0 be given. The following are equivalent:

(i) AQ = 0;
(ii) AP(S) = A.

Proof. There is a very simple proof in the case of finite state-space: by the
backward equation

d
ds>'P(s) = >.P'(s) = >.QP(s)

so AQ = 0 implies AP(S) = AP(O) = A for all s; P(s) is also recurrent, so
IlP (s) = Il implies that Il is proportional to A, so IlQ = O.

For infinite state-space, the interchange of differentiation with the sum­
mation involved in multiplication by A is not justified and an entirely dif­
ferent proof is needed.

Since Q is recurrent, it is non-explosive by Theorem 2.7.1, and P(s) is
recurrent by Theorem 3.4.3. Hence any A satisfying (i) or (ii) is unique up
to scalar multiples; and from the proof of Theorem 3.5.3, if we fix i and set

then IlQ = o. Thus it suffices to show IlP( s) = Il. By the strong Markov
property at Ti (which is a simple consequence of the strong Markov property
of the jump chain)
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Hence, using Fubini's theorem,

l
s+Ti

/-£j = lEi s l{Xt=j}dt

= 100

JP\(Xs +t = j, t < Ti)dt

= roo '2:)J.»i(Xt = k, t < Ti)Pkj(s)dt
Jo kEI

= L(lEi (Ti l{Xt=k}dt)Pk j (s)
kEI Jo

= :E /-£kPkj(S)
kEI

121

as required. D

Theorem 3.5.6. Let Q be an irreducible non-explosive Q-matrix having
an invariant distribution A. If (Xt)(~O is Markov(A, Q) then so is (Xs+t)(~O

for any S 2: o.
Proof. By Theorem 3.5.5, for all i,

IF(Xs = i) = (AP(S))i = Ai

so, by the Markov property, conditional on X s

Markov(8i , Q). D

3.6 Convergence to equilibrium

We now investigate the limiting behaviour of Pij (t) as t ~ 00 and its relation
to invariant distributions. You will see that the situation is analogous to the
case of discrete-time, only there is no longer any possibility of periodicity.

We shall need the following estimate of uniform continuity for the tran­
sition probabilities.

Lemma 3.6.1. Let Q be a Q-matrix with semigroup P(t). Then, for all
t, h 2: 0

Proof. We have

Ipij(t + h)-Pij(t)1 = I:EPik(h)Pkj(t) - Pij(t)1
kEI

= !:EPik(h)Pkj(t) - (1 - pii(h))pij(t) I
k#i

:s; 1 - pii(h) :s; lFi(J1 :s; h) = 1 - e-qih
. D
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Theorem 3.6.2 (Convergence to equilibrium). Let Q be an irre­
ducible non-explosive Q-matrix with semigroup P(t), and having an in­
variant distribution A. Then for all states i, j we have

Proof Let (Xt)(~O be Markov(8i , Q). Fix h > 0 and consider the h-skeleton
Zn = Xnh. By Theorem 2.8.4

so (Zn)n~O is discrete-time Markov(8i , P(h)). By Theorem 3.2.1 irreducibil­
ity implies pij(h) > 0 for all i,j so P(h) is irreducible and aperiodic. By
Theorem 3.5.5, A is invariant for P(h). So, by discrete-time convergence to
equilibrium, for all i, j

Thus we have a lattice of points along which the desired limit holds; we fill
in the gaps using uniform continuity. Fix a state i. Given € > 0 we can
find h > 0 so that

for 0 ~ s ~ h

and then find N, so that

for n 2: N.

For t 2: Nh we have nh ~ t < (n + l)h for some n 2: Nand

by Lemma 3.6.1. Hence

Pij(t)~Aj as n~oo. D

The complete description of limiting behaviour for irreducible chains in
continuous time is provided by the following result. It follows from Theorem
1.8.5 by the same argument we used in the preceding result. We do not
give the details.
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Theorem 3.6.3. Let Q be an irreducible Q-matrix and let v be any dis­
tribution. Suppose that (Xt)(~O is Markov(v, Q). Then

as t ~ 00 for all j E I

where mj is the expected return time to state j.

Exercises

3.6.1 Find an invariant distribution A for the Q-matrix

Q = (~2 !4 ~)
2 1 -3

and verify that limt~ooPII(t)= Al using your answer to Exercise 2.1.1.

3.6.2 In each of the following cases, compute limt~ooP(Xt = 21Xo = 1) for
the Markov chain (Xt)t~O with the given Q-matrix on {1,2,3,4}:

(a)

(c)

(1
2 1 1

11)
-1 1
0 -1
0 0

(1
1 1 0

]2)
-1 0
0 -2
0 2

(b)

(d)

(1
2 1 1

~)
-1 1
0 -1
0 0

(1
2 1 0

~)
-2 2
1 -1
0 0

3.6.3 Customers arrive at a single-server queue in a Poisson stream of rate
A. Each customer has a service requirement distributed as the sum of two
independent exponential random variables of parameter J-l. Service require­
ments are independent of one another and of the arrival process. Write
down the generator matrix Q of a continuous-time Markov chain which
models this, explaining what the states of the chain represent. Calculate
the essentially unique invariant measure for Q, and deduce that the chain
is positive recurrent if and only if AIIl < 1/2.

3.7 Time reversal

Time reversal of continuous-time chains has the same features found in the
discrete-time case. Reversibility provides a powerful tool in the analysis
of Markov chains, as we shall see in Section 5.2. Note in the following
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result how time reversal interchanges the roles of backward and forward
equations. This echoes our proof of the forward equation, which rested on
the time reversal identity of Lemma 2.8.5.

A small technical point arises in time reversal: right-continuous processes
become left-continuous processes. For the processes we consider, this is
unimportant. We could if we wished redefine the time-reversed process
to equal its right limit at the jump times, thus obtaining again a right­
continuous process. We shall suppose implicitly that this is done, and
forget about the problem.

Theorem 3.7.1. Let Q be irreducible and non-explosive and suppose
that Q has an invariant distribution A. Let T E (0,00) be given and let

(Xt)O<t<T be Markov(A, Q). Set Xt = X T - t . Then the process (Xt)O<t<T
is Ma;k~v(A, Q), where Q = (~j : i,j E 1) is given by Aj~i = Aiqijo Mo;e­
over, Q is also irreducible and non-explosive with invariant distribution A.

Proof. By Theorem 2.8.6, the semigroup (P(t) : t 2: 0) of Q is the minimal
non-negative solution of the forward equation

P'(t) = P(t)Q, P(O) = I.

Also, for all t > 0, P(t) is an irreducible stochastic matrix with invariant
distribution A. Define P(t) by

AjPJi(t) = AiPij(t),

then P(t) is an irreducible stochastic matrix with invariant distribution A,
and we can rewrite the forward equation transposed as

P'(t) = QP(t) .
.-

But this is the backward equation for Q, which is itself a Q-matrix, and
P(t) is then its minimal non-negative solution. Hence Q is irreducible and
non-explosive and has invariant distribution A.

Finally, for 0 = to < ... < t n = T and Sk = tk - tk-1, by Theorem 2.8.4
we have

P(Xto = io, ... ,Xtn = in) = P(XT-to = io, ... ,XT- tn = in)

= AinPinin-l (sn) ... Pil io (Sl)

= AioPioil (Sl) ... Pin-lin (Sn)

SO, by Theorem 2.8.4 again, (Xt)O~t~T is Markov(A, Q). D

The chain (Xt)O~t~T is called the time-reversal of (Xt)O~t~T.

A Q-matrix Q and a measure A are said to be in detailed balance if

for all i, j.
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Lemma 3.7.2. IfQ and A are in detailed balance then A is invariant for
Q.

Proof· We have (AQ)i = EjEI Ajqji = EjEI Aiqij = 0. D

Let (Xt)(~O be Markov(A, Q), with Q irreducible and. non-explosive.
We say that (Xt)(~O is reversible if, for all T > 0, (XT-t)OstsT is also
Markov(A, Q).

Theorem 3.7.3. Let Q be an irreducible and non-explosive Q-matrix and
let A be a distribution. Suppose that (Xt)(~O is Markov(A, Q). Then the
following are equivalent:

(a) (Xt)(~O is reversible;
(b) Q and A are in detailed balance.

Proof. Both (a) and (b) imply that A is invariant for Q. Then both (a) and
(b) are equivalent to the statement that Q= Q in Theorem 3.7.1. D

Exercise

3.7.1 Consider a fleet of N buses. Each bus breaks down independently
at rate J-l, when it is sent to the depot for repair. The repair shop can
only repair one bus at a time and each bus takes an exponential time of
parameter A to repair. Find the equilibrium distribution of the number of
buses in service.

3.7.2 Calls arrive at a telephone exchange as a Poisson process of rate A,
and the lengths of calls are independent exponential random variables of
parameter J-l. Assuming that infinitely many telephone lines are available,
set up a Markov chain model for this process.

Show that for large t the distribution of the number of lines in use at
time t is approximately Poisson with mean AIJ-l.

Find the mean length of the busy periods during which at least one line
is in use.

Show that the expected number of lines in use at time t, given that n
are in use at time 0, is ne-J-Lt + A(l - e-J-Lt)1J-l.

Show that, in equilibrium, the number Nt of calls finishing in the time
interval [0, t] has Poisson distribution of mean At.

Is (Nt)t~o a Poisson process?

3.8 Ergodic theorem

Long-run averages for continuous-time chains display the same sort of be­
haviour as in the discrete-time case, and for similar reasons. Here is the
result.
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Theorem 3.8.1 (Ergodic theorem). Let Q be irreducible and let v be
any distribution. If (Xt)(~O is Markov(v, Q), then

]p> (~ t l{x
s
=i}ds ~ _1_ as t ~ 00) = 1

t io miqi

where mi = IEi(Ti ) is the expected return time to state i. Moreover, in the
positive recurrent case, for any bounded function f : I ~ lR we have

where

and where (Ai: i E I) is the unique invariant distribution.

Proof. If Q is transient then the total time spent in any state i is finite, so

1 t 1 {~ 1
t Jo l{x s =i}ds::; t Jo l{x s =i}ds ~ 0 = mi ·

Suppose then that Q is recurrent and fix a state i. Then (Xt)(~O hits i
with probability 1 and the long-run proportion of time in i equals the long­
run proportion of time in i after first hitting i. So, by the strong Markov
property (of the jump chain), it suffices to consider the case v = bi.

Denote by Mi the length of the nth visit to i, by Tin the time of the
nth return to i and by Li the length of the nth excursion to i. Thus for
n = 0,1,2, ... , setting Tp = 0, we have

M;+l = inf{t > Tin: X t =1= i} - Tin

Ti
n+1 = inf{t > Tin + M;+l : X t = i}

L~+l = T?1'+l - T!"
~ ~ ~ .

By the strong Markov property (of the jump chain) at the stopping times
Tin for n ~ 0 we find that L}, L~ , . .. are independent and identically dis­
tributed with mean mi, and that Ml, M?, ... are independent and identi­
cally distributed with mean l/qi. Hence, by the strong law of large numbers
(see Theorem 1.10.1)

L~ + ... + Lr:t
~ ~ ~ mi

n
M~ + ... +M!L 1

~ ~~-

n qi

asn~oo

asn~oo
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M~ + ... + M!L 1
~ ~ ~-- asn~oo

L} + ···+Li miqi
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with probability 1. In particular, we note that Tin /Ti
n+1 ~ 1 as n ~ 00

with probability 1. Now, for Tin ~ t < Ti
n+1 we have

T!L M~ + ···+ M!L 1 it T!"+l M~ + ···+ M!"+l
-~- ~ ~ <- 1 ·ds<-~- ~ ~
T!"+l L~ + ···+ Lr:t - t 0 {Xs=~} - T!L L~ + ... + L,,:+l

~ ~ ~ ~ ~ ~

so on letting t ~ 00 we have, with probability 1

In the positive recurrent case we can write

where Ai = 1/(miqi). We conclude that

1 it- f(Xs)ds ~ 1
t 0

ast~oo

with probability 1, by the same argument as was used in the proof of The­
orem 1.10.2. D
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Further theory

In the first three chapters we have given an account of the elementary theory
of Markov chains. This already covers a great many applications, but is
just the beginning of the theory of Markov processes. The further theory
inevitably involves more sophisticated techniques which, although having
their own interest, can obscure the overall structure. On the other hand,
the overall structure is, to a large extent, already present in the elementary
theory. We therefore thought it worth while to discuss some features of the
further theory in the context of simple Markov chains, namely, martingales,
potential theory, electrical networks and Brownian motion. The idea is that
the Markov chain case serves as a guiding metaphor for more complicated
processes. So the reader familiar with Markov chains may find this chapter
helpful alongside more general higher-level texts. At the same time, further
insight is gained into Markov chains themselves.

4.1 Martingales

A martingale is a process whose average value remains constant in a par­
ticular strong sense, which we shall make precise shortly. This is a sort of
balancing property. Often, the identification of martingales is a crucial step
in understanding the evolution of a stochastic process.

We begin with a simple example. Consider the simple symmetric random
walk (Xn)n~O on Z, which is a Markov chain with the following diagram
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i-I

1 1
2 2
I( • •

i i+l

The average value of the walk is constant; indeed it has the stronger prop­
erty that the average value of the walk at some future time is always simply
the current value. In precise terms we have

and the stronger property says that, for n ~ m,

E(Xn - X m I X o = io, ... ,Xm = im ) = o.

This stronger property says that (Xn)n~O is in fact a martingale.

Here is the general definition. Let us fix for definiteness a Markov chain
(Xn)n~O and write Fn for the collection of all sets depending only on
X o, ... ,Xn. The sequence (Fn)n~o is called the filtration of (Xn)n~O and
we think of F n as representing the state of knowledge, or history, of the
chain up to time n. A process (Mn)n~o is called adapted if Mn depends
only on X o, . .. ,Xn. A process (Mn)n~o is called integmble if EIMnl < 00

for all n. An adapted integrable process (Mn)n~o is called a martingale if

for all A E Fn and all n. Since the collection Fn consists of countable
unions of elementary events such as

this martingale property is equivalent to saying that

for all i o, . .. ,in and all n.

A third formulation of the martingale property involves another notion of
conditional expectation. Given an integrable random variable Y, we define

lE(Y IFn ) = L lE(Y I X o = i o,· .. ,Xn = i n )l{xo=io, ... ,Xn=in }'

io,··· ,in
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The random variable E(Y I Fn ) is called the conditional expectation of Y
given F n . In passing from Y to E(Y I F n ), what we do is to replace on
each elementary event A E Fn , the random variable Y by its average value
E(Y I A). It is easy to check that an adapted integrable process (Mn)n~o

is a martingale if and only if

Conditional expectation is a partial averaging, so if we complete the process
and average the conditional expectation we should get the full expectation

E(E(Y I Fn )) = E(Y).

It is easy to check that this formula holds.

In particular, for a martingale

so, by induction

This was already clear on taking A = n in our original definition of a
martingale.

We shall prove one general result about martingales, then see how it
explains some things we know about the simple symmetric random walk.
Recall that a random variable

T : n ~ {O, 1, 2, ... } u {(X)}

is a stopping time if {T = n} E F n for all n < 00. An equivalent condition
is that {T ::; n} E Fn for all n < 00. Recall from Section 1.4 that all sorts
of hitting times are stopping times.

Theorem 4.1.1 (Optional stopping theorem). Let (Mn)n~o be a
martingale and let T be a stopping time. Suppose that at least one of the
following conditions holds:

(i) T::; n for some n;

(ii) T < 00 and IMnl ~ C whenever n ~ T.
Then lEMr = lEMo.

Proof. Assume that (i) holds. Then

Mr - Mo = (Mr - Mr - 1 ) + ···+ (M1 - Mo)
n-l

= :2)Mk+l - Mk)lk<T.
k=O
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Now {k.< T} = {T ~ k}C E Fk since T is a stopping time, and so

since (Mk)k~O is a martingale. Hence

n-l

EMT - EMo = L E[(Mk+l - Mk)lk<T] = O.
k=O
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If we do not assume (i) but (ii), then the preceding argument applies to the
stopping time T 1\ n, so that IEMTAn = IEMo. Then

IIEMT - IEMol = IIEMT - IEMTAnl ~ IEIMT - MTAnl ~ 2CJP>(T > n)

for all n. But JP>(T > n) ~ 0 as n ~ 00, so EMT = EMo. D

Returning to the simple symmetric random walk (Xn)n~O, suppose that
Xo = 0 and we take

T = inf{n ~ 0 : X n = -a or X n = b}

where a, bEN are given. Then T is a stopping time and T < 00 by
recurrence of finite closed classes. Thus condition (ii) of the optional stop­
ping theorem applies with Mn = X n and C = a V b. We deduce that
IEXT = EXo = O. So what? Well, now we can compute

p = JP>(Xn hits -a before b).

We have X T = -a with probability p and X T = b with probability 1 - p,

so
o= EXT = p(-a) + (1 - p)b

giving

p = b/(a + b).

There is an entirely different, Markovian, way to compute p, using the
methods of Section 1.4. But the intuition behind the result EXT = 0 is
very clear: a gambler, playing a fair game, leaves the casino once losses
reach a or winnings reach b, whichever is sooner; since the game is fair, the
average gain should be zero.

We discussed in Section 1.3 the counter-intuitive case of a gambler who
keeps on playing a fair game against an infinitely rich casino, with the
certain outcome of ruin. This game ends at the finite stopping time

T = inf{n ~ 0 : X n = -a}
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where a is the gambler's initial fortune. Since XT = -a we have

EXT = -a =I 0 = EXo

but this does not contradict the optional stopping theorem because neither
condition (i) nor condition (ii) is satisfied. Thus, while intuition might
suggest that EXT = EXo is rather obvious, some care is needed as it is not
always true.

The example just discussed was rather special in that the chain (Xn)n~O

itself was a martingale. Obviously, this is not true in general; indeed a
martingale is necessarily real-valued and we do not in general insist that
the state-space I is contained in JR. Nevertheless, to every Markov chain is
associated a whole collection of martingales, and these martingales charac­
terize the chain. This is the basis of a deep connection between martingales
and Markov chains.

We recall that, given a function f : I ~ JR and a Markov chain (Xn)n~O

with transition matrix P, we have

(pn J)(i) = Lp~j) Ii = lEi (J(Xn)).
jEI

Theorem 4.1.2. Let (Xn)n~O be a random process with values in I and
let P be a stochastic matrix. Write (Fn)n~o for the filtration of (Xn)n~O.
Then the following are equivalent:

(i) (Xn)n~O is a Markov chain with transition matrix P;

(ii) for all bounded functions f : I ~ JR, the following process is a mar­
tingale:

n-l

M~ = f(Xn ) - f(Xo) - L (P - I)f(Xm ).

m=O

Proof. Suppose (i) holds. Let f be a bounded function. Then

I(PJ)(i)1 = ILPij1i1 ::; s~p llil
jEI J

so
IM~I ~ 2(n+1)suplfjl < 00

j

showing that M~ is integrable for all n.

Let A = {Xo = i o, ... ,Xn = in}. By the Markov property
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so

E(M~+1 - M! IA) = E[f(Xn +l ) - (Pf)(Xn ) I A] = 0

and so (Ml)n~o is a martingale.

On the other hand, if (ii) holds, then

for all bounded functions f. On taking f = l{in +l} we obtain
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so (Xn)n~O is Markov with transition matrix P. D

Some more martingales associated to a Markov chain are described in
the next result. Notice that we drop the requirement that f be bounded.

Theorem 4.1.3. Let (Xn)n~O be a Markov chain with transition matrix
P. Suppose that a function f : N x I ~ lR satisfies, for all n ~ 0, both

and
(Pf)(n+ 1,i) = LPijf(n+ 1,j) = f(n,i).

JEI

Then M n = f(n, X n ) is a martingale.

Proof. We have assumed that M n is integrable for all n. Then, by the
Markov property

E(Mn +1 - Mn I Xo = i o,· .. ,Xn = in) = Ein [f(n + 1, Xl) - f(n, X o)]

= (Pf)(n + 1, in) - f(n, in) = O.

So (Mn)n~o is a martingale. D

Let us see how this theorem works in the case where (Xn)n~O is a simple
random walk on Z, starting from O. We consider f (i) = i and g(n, i) =
i 2 - n. Since IXnl ~ n for all n, we have

Also

(P f)(i) = (i - 1)/2 + (i + 1)/2 = i = f(i),

(Pg)(n + 1, i) = (i - 1)2/2 + (i - 1)2/2 - (n + 1) = i2 - n = g(n, i).

Hence both X n = f(Xn) and Yn = g(n, X n) are martingales.
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In order to put this to some use, consider again the stopping time

T = inf{n ~ 0 : X n = -a or X n = b}

where a, bEN. By the optional stopping theorem

Hence

On letting n ---+ 00, the left side converges to E(T), by monotone conver­
gence, and the right side to E(Xf) by bounded convergence. So we obtain

We have given only the simplest examples of the use of martingales in
studying Markov chains. Some more will appear in later sections. For
an excellent introduction to martingales and their applications we recom­
mend Probability with Martingales by David Williams (Cambridge Univer­
sity Press, 1991).

Exercise

4.1.1 Let (Xn)n~O be a Markov chain on I and let A be an absorbing set
in I. Set

T = inf{n ~ 0: X n E A}

and
hi = IPi(Xn E A for some n ~ 0) = IPi(T < 00).

Show that M n = h(Xn ) is a martingale.

4.2 Potential theory

Several physical theories share a common mathematical framework, which is
known as potential theory. One example is Newton's theory of gravity, but
potential theory is also relevant to electrostatics, fluid flow and the diffusion
of heat. In gravity, a distribution of mass, of density p say, gives rise to a
gravitational potential ¢, which in suitable units satisfies the equation

-Da¢ = p,

where ~ = 82 /8x2 + 82 /8y2 + 82 / 8z2 . The potential ¢ is felt physically
through its gradient

'\l¢ = (8¢ 8¢ 8¢)
8x' 8y' 8z
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which gives the force of gravity acting on a particle of unit mass. Markov
chains, where space is discrete, obviously have no direct link with this the­
ory, in which space is a continuum. An indirect link is provided by Brownian
motion, which we shall discuss in Section 4.4.

In this section we are going to consider potential theory for a count­
able state-space, which has much of the structure of the continuum version.
This discrete theory amounts to doing Markov chains without the proba­
bility, which has the disadvantage that one loses the intuitive picture of the
process, but the advantage of wider applicability. We shall begin by intro­
ducing the idea of potentials associated to a Markov chain, and by showing
how to calculate these potentials. This is a unifying idea, containing within
it other notions previously considered such as hitting probabilities and ex­
pected hitting times. It also finds application when one associates costs to
Markov chains in modelling economic activity: see Section 5.4.

Once we have established the basic link between a Markov chain and its
associated potentials, we shall briefly run through some of the main features
of potential theory, explaining their significance in terms of Markov chains.
This is the easiest way to appreciate the general structure of potential
theory, unobscured by technical difficulties. The basic ideas of boundary
theory for Markov chains will also be introduced.

Before we embark on a general discussion of potentials associated to
a Markov chain, here are two simple examples. In these examples the
potential cP has the interpretation of expected total cost.

1

2 5

4

Example 4.2.1

Consider the discrete-time random walk on the directed graph shown above,
which at each step choses among the allowable transitions with equal proba­
bility. Suppose that on each visit to states i = 1,2,3,4 a cost Ci is incurred,
where Ci = i. What is the fair price to move from state 3 to state 4?

The fair price is always the difference in the expected total cost. We
denote by cPi the expected total cost starting from i. Obviously, cPs = 0 and
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by considering the effect of a single step we see that

¢l = 1 + ¢2,

¢2 = 2 + ¢3,

¢3 = 3 + ~¢l + ~¢4'

¢4 = 4.

Hence ¢3 = 8 and the fair price to move from 3 to 4 is 4.

We shall now consider two variations on this problem. First suppose
our process is, instead, the continuous-time random walk (Xt)t~O on the
same directed graph which makes each allowable transition at rate 1, and
suppose cost is incurred at rate Ci = i in state i for i = 1,2,3,4. Thus the
total cost is now 100

c(Xs)ds.

What now is the fair price to move from 3 to 4? The expected cost incurred
on each visit to i is given by Ci/qi and ql = 1, q2 = 1, q3 = 3, q4 = 1. So we
see, as before

¢l = 1 + ¢2,

¢2 = 2 + ¢3,

¢3 = i + ~¢l + ~¢4'

¢4 = 4.

Hence ¢3 = 5 and the fair price to move from 3 to 4 is 1.

1

2 5

4

In the second variation we consider the discrete-time random walk
(Xn)n~O on the modified graph shown above. Where there is no arrow,
transitions are allowed in both directions. Obviously, states 1 and 5 are
absorbing. We impose a cost Ci = i on each visit to i for i = 2, 3, 4, and a
final cost Ii on arrival at i = 1 or 5, where Ii = i. Thus the total cost is
now

T-l

L c(Xn ) + f(XT )

n=O
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where T is the hitting time of {I, 5}. Write, as before, cPi for the expected
total cost starting from i. Then cPl = 1, cPs = 5 and

cP2 = 2 + ~(cPl + cP3),

cP3 = 3 + ~(cPl + cP2 + cP4 + cPs),

cP4 = 4 + ~(cP3 + cPs).

On solving these equations we obtain cP2 = 7, cP3 = 9 and cP4 = 11. So in
this case the fair price to move from 3 to 4 is -2.

Example 4.2.2

Consider the simple discrete-time random walk on Z with transition prob­
abilities Pi,i-l = q < P = Pi,i+l. Let c > 0 and suppose that a cost ci is
incurred every time the walk visits state i. What is the expected total cost
cPo incurred by the walk starting from O?

We must be prepared to find that cPo = 00 for some values of c, as the
total cost is a sum over infinitely many times. Indeed, we know that the
walk X n ~ 00 with probability 1, so for c ~ 1 we shall certainly have
cPo = 00.

Let cPi denote the expected total cost starting from i. On moving one
step to the right, all costs are multiplied by c, so we must have

By considering what happens on the first step, we see

cPo = 1 + PcPl + qcP-l = 1 + (cp + q/c)cPo.

Note that cPo = 00 always satisfies this equation. We shall see in the general
theory that cPo is the minimal non-negative solution. Let us look for a finite
solution: then

so
c

cPo = .
c - c2p - q

The quadratic c2p - c + q has roots at q/p and 1, and takes negative values
in between. Hence the expected total cost is given by

{
c/(c- c2p-q)

cPo =
00

if c E (q/p, l)
otherwise.
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It was clear at the outset that cPo = 00 when c ~ 1. It is interesting that
cPo = 00 also when c is too small: in this case the costs rapidly become large
to the left of 0, and although the walk eventually drifts away to the right,
the expected cost incurred to the left of 0 is infinite.

In the examples just discussed we were able to calculate potentials by
writing down and solving a system of linear equations. This situation is
familiar from hitting probabilities and expected hitting times. Indeed, these
are simple examples of potentials for Markov chains. As the examples show,
one does not really need a general theory to write down the linear equations.
Nevertheless, we are now going to give some general results on potentials.
These will help to reveal the scope of the ideas used in the examples, and
will reveal also what happens when the linear equations do not have a
unique solution. We shall discuss the cases of discrete and continuous time
side-by-side. Throughout, we shall write (Xn)n~O for a discrete-time chain
with transition matrix P, and (Xt)t~O for a continuous-time chain with
generator matrix Q. As usual, we insist that (Xt)(~O be minimal.

Let us partition the state-space I into two disjoint sets D and aD; we call
aD the boundary. We suppose that functions (Ci : i E D) and (Ii: i E aD)
are given. We shall consider the associated potential, defined by

in discrete time, and in continuous time

where T denotes the hitting time of aD. To be sure that the sums and
integrals here are well defined, we shall assume for the most part that c
and I are non-negative, that is, Ci ~ 0 for all i E D and Ii ~ 0 for all
i E aD. More generally, ¢ is the difference of the potentials associated with
the positive and negative parts of c and I, so this assumption is not too
restrictive. In the explosive case we always set c(00) = 0, so no further
costs are incurred after explosion.

The most obvious interpretation of these potentials is in terms of cost:
the chain wanders around in D until it hits the boundary: whilst in D, at
state i say, it incurs a cost Ci per unit time; when and if it hits the boundary,
at j say, a final cost Ij is incurred. Note that we do not assume the chain
will hit the boundary, or even that the boundary is non-empty.
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Theorem 4.2.3. Suppose that (Ci : i E D) and (Ii: i E aD) are non­
negative. Set

where T denotes the hitting time of aD. Then

(i) the potential ¢ = (¢i : i E I) satisfies

{
¢ = P¢+ C

¢=I

(ii) if'l/J = ('l/Ji : i E I) satisfies

in D

in aD;
(4.1)

{
'l/J ~ P'l/J+c in D

'l/J ~ I in aD
(4.2)

and 'l/Ji ~ 0 for all i, then 'l/Ji ~ ¢i for all i;

(iii) if IPi(T < 00) = 1 for all i, then (4.1) has at most one bounded
solution.

Proof. (i) Obviously, ¢ = f on aD. For i E D by the Markov property

IEi ( L c(Xn ) + f(XT )IT<oo Xl = j)
l~n<T

= IEj (L c(Xn ) + f(XT )lT <OO) = ¢j

n<T

so we have

<Pi = Ci + LpijlE ( L c(Xn ) + f(XT )lT <oo Xl = j)
jEI l~n<T

=Ci+ LPWPj
jEI

as required.

(ii) Consider the expected cost up to time n:
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By monotone convergence, ¢i(n) i ¢i as n ~ 00. Also, by the argument
used in part (i), we find

{
¢(n + 1) = c + P¢(n) in D

¢(n + 1) = f in aD.

Suppose that 1/J satisfies (4.2) and 1/J ~ 0 = ¢(O). Then 1/J ~ P1/J + c ~

P¢(O) + c = ¢(1) in D and 1/J ~ f = ¢(1) in aD, so 1/J ~ ¢(1). Similarly
and by induction, 1/J ~ ¢(n) for all n, and hence 1/J ~ ¢.

(iii) We shall show that if 1/J satisfies (4.2) then

with equality if equality holds in (4.2). This is another proof of (ii). But
also, in the case of equality, if l1/Ji I ~ M and Pi (T < 00) = 1 for all i, then
asn~oo

so 1/J = limn~oo ¢(n) = ¢, proving (iii).

For i E D we have

'ljJi ~ Ci + L Pij!j + LPij'ljJj
jEaD JED

and, by repeated substitution for 1/J on the right

'ljJi ~ Ci + L Pijli + LPijCj
jEaD JED

+ ···+ 2: ... 2: Piil'" Pjn-2jn-l Cjn_l

jlED jn-IED

+ L '" L L PijI'" Pjn-lin !jn
jlED jn-IEDjnEaD

+ 2: ... L Pijl · · · Pjn-lin 'ljJjn
jlED jnED

= E i (c(XO)lT>O + !(XdlT=l + C(Xdlr>l

+ ···+ C(Xn-1)lT>n-l + !(Xn)lT=n + 'ljJ(Xn)lT>n)

= ¢i(n - 1) + IEi (1/J(Xn)lT~n)

as required, with equality when equality holds in (4.2). D
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It is illuminating to think of the calculation we have just done in terms
of martingales. Consider

n-l

M n = L c(Xk)lk<T + f(XT )IT<n + 'ljJ(Xn)ln::;T'
k==O

Then

n-l

lE(Mn+l IFn) = L c(Xk)lk<T + f(XT )lT<n
k==O

+ (P1jJ + c)(Xn )lT>n + I(Xn )lT==n

:::;Mn

with equality if equality holds in (4.2). We note that M n is not necessarily
integrable. Nevertheless, it still follows that

with equality if equality holds in (4.2).

For continuous-time chains there is a result analogous to Theorem 4.2.3.
We have to state it slightly differently because when cP takes infinite val­
ues the equations (4.3) may involve subtraction of infinities, and therefore
not make sense. Although the conclusion then appears to depend on the
finiteness of cP, which is a priori unknown, we can still use the result to
determine cPi in all cases. To do this we restrict our attention to the set of
states J accessible from i. If the linear equations have a finite non-negative
solution on J, then (cPj : j E J) is the minimal such solution. If not, then
cPj = 00 for some j E J, which forces cPi = 00, since i leads to j.

Theorem 4.2.4. Assume that (Xt)t~O is minimal, and that (Ci : i E D)
and (Ii: i E aD) are non-negative. Set

where T is the hitting time of aD. Then cP = (cPi : i E I), if finite, is the
minimal non-negative solution to

{
-QcP = C

cP=1
in D

in aD.
(4.3)
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If ¢i = 00 for some i, then (4.3) has no finite non-negative solution. More­
over, if IPi(T < 00) == 1 for all i, then (4.3) has at most one bounded
solution.

Proof. Denote by (Yn)n>O and 8 1 ,82 , ... the jump chain and holding times
of (Xt)t~O, and by IT the jump matrix. Then

iT c(Xt)dt + !(XT)lT<oo = L c(Yn)Sn+l + !(YN)lN<oo
o n<N

where N is the first time (Yn)n~O hits aD, and where we use the convention
o x 00 = 0 on the right. We have

()
") __ { Cj / qj

lE c(Yn Sn+l IYn = J = Cj = 0

so, by Fubini's theorem

if Cj > 0

if Cj = 0,

¢i = lEi(L c(Yn) + !(YN)lN<oo).
n<N

By Theorem 4.2.3, ¢ is therefore the minimal non-negative solution to

{
¢ = IT¢ + c in D

¢ == f in aD,
(4.4)

which equations have at most one bounded solution if IPi(N < 00) = 1 for
all i. Since the finite solutions of (4.4) are exactly the finite solutions of
(4.3), and since N is finite whenever T is finite, this proves the result. D

It is natural in some economic applications to apply to future costs a
discount factor a E (0, 1) or rate A E (0, 00), corresponding to an interest
rate. Potentials with discounted costs may also be calculated by linear
equations; indeed the discounting actually makes the analysis easier.

Theorem 4.2.5. Suppose that (Ci : i E I) is bounded. Set

00

¢i = lEi L anc(Xn)
n==O

then ¢ = (¢i : i E I) is the unique bounded solution to

¢ = aP¢+c.
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Proof. Suppose that ICil ::; C for all i, then

00

I<Pi I :::; CLan = C/(l- a)
n==O

so ¢ is bounded. By the Markov property

Then
00

<Pi = lEi L anc(Xn)
n==O

= ci + a LPijlE (f an-Ic(Xn) Xl = j)
jEI n==l

= Ci + a LPij<Pj,
jEI

so
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¢ = c+aP¢.

On the other hand, suppose that 1/J is bounded and also that 1/J = c + aP1/J.
Set M = sUPi l1/Ji - ¢il, then M < 00. But

1/J - ¢ = aP(1/J - ¢)

so

I'l/Ji - <Pi I :::; a LPijl'l/Jj - <pjl :::; aM.
jEI

Hence M ::; aM, which forces M = 0 and 1/J = ¢. D

We have a similar looking result for continuous time, which however lies
a little deeper, because it really corresponds to a version of the discrete-time
result where the discount factor may depend on the current state.

Theorem 4.2.6. Assume that (Xt)t~O is non-explosive. Suppose that
(Ci : i E I) is bounded. Set

<Pi = lEi100

e->..tc(Xt)dt,

then ¢ = (¢i : i E I) is the unique bounded solution to

(A - Q)¢ = c. (4.5)
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Proof. Assume for now that c is non-negative. Introduce a new state awith
Ca = O. Let T be an independent E(-X) random variable and define

- {Xt for t < T
Xt = a for t ~ T.

Then (Xt)t~O is a Markov chain on I U {a} with modified transition rates

Qi = qi + -X, Qia = -X, qa = O.

Also T is the hitting time of a, and is finite with probability 1. By Fubini's
theorem

<Pi = E i lT

c(Xt)dt.

Suppose Ci :::; C for all i, then

so ¢ is bounded. Hence, by Theorem 4.2.4, ¢ is the unique bounded solution
to

-Q¢ = c,

which is the same as (4.5).

When C takes negative values we can apply the preceding argument to
the potentials

<P; = Ei 100

e->.tc±(Xt)dt

where ct = (±c) V o. Then ¢ = ¢+ - ¢- so ¢ is bounded. We have

so, subtracting
(-X - Q)¢ = c.

Finally, if 1jJ is bounded and (-X-Q)1jJ = c, then (-X-Q)(1jJ-¢) = 0, so 1jJ-¢
is the unique bounded solution for the case when c = 0, which is O. D

The point of view underlying the last four theorems was that we were
interested in a given potential associated to a Markov chain, and wished to
calculate it. We shall now take a brief look at some structural aspects of
the set of all potentials of a given Markov chain. What we describe is just
the simplest case of a structure of great generality. First we shall look at
the Green matrix, and then at the role of the boundary.
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Let us consider potentials with non-negative costs c, and without bound­
ary. The potential is defined by

00

¢i = lEi L c(Xn )

n==O

in discrete time, and in continuous time

By Fubini's theorem we have

00 00

¢i = L lEic(Xn) = L(pnC)i = (GC)i
n==O n==O

where G = (9ij : i, j E I) is the Green matrix

00

Similarly, in continuous time ¢ = Gc, with

G = 100

P(t)dt.

Thus, once we know the Green matrix, we have explicit expressions for
all potentials of the Markov chain. The Green matrix is also called the
fundamental solution of the linear equations (4.1) and (4.3). The jth column
(9ij : i E I) is itself a potential. We have

00

9ij = lEi L lXn=j
n==O

in discrete time, and in continuous time

Thus 9ij is the expected total time in j starting from i. These quantities
have already appeared in our discussions of transience and recurrence in
Sections 1.5 and 2.11: we know that 9ij = 00 if and only if i leads to j and
j is recurrent. Indeed, in discrete time
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where hi is the probability of hitting j from i, and /j is the return proba­
bility for j. The formula for continuous time is

For potentials with discounted costs the situation is similar: in discrete
time

00 00

<Pi = lEi L anc(Xn) = L anlEic(Xn) = (RaC)i
n=O n=O

where

and in continuous time

where

R>.. =100

e->..tP(t)dt.

We call (RQ : Q: E (0,1)) and (R>.. : ,\ E (0,00)) the resolvent of the Markov
chain. Unlike the Green matrix the resolvent is always finite. Indeed, for
finite state-space we have

and

We return to the general case, with boundary aD. Any bounded function
(¢i : i E I) for which

¢ = P¢ in D

is called harmonic in D. Our object now is to examine the relation between
non-negative functions, harmonic in D, and the boundary aD. Here are
two examples.
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Example 4.2.7

Consider the random walk (Xn)n~O on the above graph, where each allow­
able transition is made with equal probability. States a and b are absorbing.
We set aD = {a, b}. Let hi denote the absorption probability for a, starting
from i. By the method of Section 1.3 we find

1/2 5/12)
1/2 1/3
1/2 0

in D

where we have written the vector ha as a matrix, corresponding in an ob­
vious way to the state-space. The linear equations for the vector ha read

{
ha = Pha

h~ = 1, hg = o.

Thus we can find two non-negative functions ha and hb , harmonic in D,
but with different boundary values. In fact, the most general non-negative
harmonic function ¢ in D satisfies

{
¢=P¢

¢=f

where fa' fb 2:: 0, and this implies

in D

in aD

Thus the boundary points a and b give us extremal generators ha and hb

of the set of all non-negative harmonic functions.
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Example 4.2.8

Consider the random walk (Xn)n~O on Z which jumps towards 0 with prob­
ability q and jumps away from 0 with probability p = 1 - q, except that at
o it jumps to -lor 1 with probability 1/2. We choose p > q so that the
walk is transient. In fact, starting from 0, we can show that (Xn)n~O is
equally likely to end up drifting to the left or to the right, at speed p - q.

Let us consider the problem of determining for (Xn)n~O the set C of all
non-negative harmonic functions cP. We must have

cPi = PcPi+l + qcPi-l

cPo = ~cPl + ~cP-l,

cPi = qcPi+l + PcPi-l

The first equation has general solution

for i = 1, 2, . .. ,

for i = -1, - 2, . .. .

cPi = A + B(l - (q/p)i) for i = 0,1,2, ... ,

which is non-negative provided A + B ~ O. Similarly, the third equation
has general solution

cPi = A' + B' (1 - (q/p)-i) for i = 0, -1, -2, ... ,

non-negative provided A' + B' ~ O. To obtain a general harmonic function
we must match the values cPo and satisfy cPo = (cPl + cP-l)/2. This forces
A = A' and B + B' = O. It follows that all non-negative harmonic functions
have the form

where f-, f+ ~ 0 and where hi = h~i and

+ _ { ~ + ~ (1 - (q/p)i)
hi - 1 1 ( ")2 - 2 1 - (q/p)-t

for i = 0, 1, 2, ... ,

for i = -1, - 2, . .. .

In the preceding example the generators of C were in one-to-one corre­
spondence with the points of the boundary - the possible places for the
chain to end up. In this example there is no boundary, but the generators

of C still correspond to the two possibilities for the long-time behaviour of
the chain. For we have

The suggestion of this example, which is fully developed i~ other works, is
that the set of non-negative harmonic functions may be used to identify a
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generalized notion of boundary for Markov chains, which sometimes just
consists of points in the state-space, but more generally corresponds to the
varieties of possible limiting behaviour for X n as n ~ 00. See, for example,
Markov Chains by D. Revuz (North-Holland, Amsterdam, 1984).

We cannot begin to give the general theory corresponding to Example
4.2.8, but we can draw some general conclusions from Theorem 4.2.3 when
the situation is more like Example 4.2.7. Suppose we have a Markov chain
(Xn)n~O with absorbing boundary aD. Set

h? = JP>i(T < 00)

(4.6){
h8 = Ph8 in D

h8 = 1 in aD.

Note that hf = 1 for all i always gives a possible solution. Hence if (4.6) has
a unique bounded solution then hf = JP>i(T < 00) = 1 for all i. Conversely,
if Pi (T < 00) = 1 for all i, then, as we showed in Theorem 4.2.3, (4.6) has
a unique bounded solution. Indeed, we showed more generally that this
condition implies that

where T is the hitting time of aD. Then by the methods of Section 1.3 we
have

{
¢ = P¢ + c in D

¢ = f in aD

has at most one bounded solution, and since

(4.7)

is the minimal solution, any bounded solution is given by (4.7). Suppose
from now on that JP>i(T < 00) = 1 for all i. Let ¢ be a bounded non-negative
function, harmonic in D, with boundary values ¢i = Ii for i E aD. Then,
by monotone convergence

<Pi = lEi (J(XT)) = L hJI»i(XT=j).
jE8D

Hence every bounded harmonic function is determined by its boundary
values and, indeed

<P = L !ihi ,
jE8D

where
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Just as in Example 4.2.7, the hitting probabilities for boundary states form
a set of extremal generators for the set of all bounded non-negative harmonic
functions.

Exercises

4.2.1 Consider a discrete-time Markov chain (Xn)n~O and the potential ¢
with costs (Ci : i E D) and boundary values (Ii: i E aD). Set

ifn ~ T

if n > T,

n<T

where T is the hitting time of aD and a is a new state. Show that (Xn)n~o

is a Markov chain and determine its transition matrix.

Check that
00

<Pi = E i L c(Xn ) = Ei L c(Xn )

n=O

where T = T + 1 and where we set Ci = Ii on aD and Ca = O. This
shows that a general potential may always be considered as a potential
with boundary value zero or, indeed, without boundary at all.

Can you find a similar reduction for continuous-time chains?

4.2.2 Prove the fact claimed in Example 4.2.8 that

4.2.3 Let (Ci : i E I) be a non-negative function. Partition I as D U aD and
suppose that the linear equations

{
¢ = P¢ +c in D

¢ = 0 in aD

have a unique bounded solution. Show that the Markov chain (Xn)n~O

with transition matrix P is certain to hit aD.

Consider now a new partition Du aD, where D ~ D. Show that the
linear equations

{
'l/J = P'l/J + c in 15_
1f;=0 in aD

also have a unique bounded solution, and that

11/" < ,h.0/'1, - 0/'1, for all i E I.
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An electrical network has a countable set I of nodes, each node i having a
capacity 1ri > O. Some nodes are joined by wires, the wire between i and
j having conductivity aij = aji 2:: o. Where no wire joins i to j we take
aij = O. In practice, each 'wire' contains a resistor, which determines the
conductivity as the reciprocal of its resistance. Each node i holds a certain
charge Xi, which determines its potential ¢i by

A current or flow of charge is any matrix (T'ij : i, j E I) with T'ij = -T'ji.

Physically it is found that the current T'ij from i to j obeys Ohm's law:

Thus charge flows from nodes of high potential to nodes of low potential.

The first problem in electrical networks is to determine equilibrium flows
and potentials, subject to given external conditions. The nodes are parti­
tioned into two sets D and aD. External connections are made at the nodes
in aD and possibly at some of the nodes in D. These have the effect that
each node i E aD is held at a given potential Ii, and that a given current 9i
enters the network at each node i ED. The case where gi = 0 corresponds
to a node with no external connection. In equilibrium, current may also
enter or leave the network through aD , but here it is not the current but
the potential which is determined externally.

Given a flow (T'ij : i, j E I) we shall write T'i for the total flow from i to
the network:

'Yi = 2: 'Yij'

JEI

In equilibrium the charge at each node is constant, so

T'i = 9i for i E D.

Therefore, by Ohm's law, any equilibrium potential ¢ = (¢i : i E I) must
satisfy

{
LjEIaij(¢i - ¢j) = 9i,

¢i = fi'

for i E D

for i E aD.
(4.8)

There is a simple correspondence between electrical networks and reversible
Markov chains in continuous-time, given by

for i =I j.
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We shall assume that the total conductivity at each node is finite:

ai = Laij < 00.

j#i

Then ai = 7riqi = -7riqii. The capacities 7ri are the components of an
invariant measure, and the symmetry of aij corresponds to the detailed
balance equations. The equations for an equilibrium potential may now be
written in a form familiar from the preceding section:

{
-Q¢ = c in D

¢ = f in aD,
(4.9)

(4.10)

where Ci = 9i/7ri. It is natural that c appears here and not 9, because ct

and f have the same physical dimensions. We know that these equations
may fail to have a unique solution, indicating the interesting possibility
that there may be more than one equilibrium potential. However, to keep
matters simple here, we shall assume that I is finite, that the network is
connected, and that aD is non-empty. This is enough to ensure uniqueness
of potentials. Then, by Theorem 4.2.4, the equilibrium potential is given
by

¢i = Ei (iT c(Xt)dt + f(XT))
where T is the hitting time of aD.

In fact, the case where aD is empty may be dealt with as follows: we
must have

L9i=O
iEI

or there is no possibility of equilibrium; pick one node k, set aD = {k}, and
replace the condition ~k = 9k by ¢i = O. The new problem is equivalent to
the old, but now aD is non-empty.

A B c

2

1

2

1

2

1

2

D E F
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Example 4.3.1

Determine the equilibrium current in the network shown on the preceding
page when unit current enters at A and leaves at F. The conductivities are
shown on the diagram. Let us set cPA = 1 and cPF = O. This will result in
some flow from A to F, which we can scale to get a unit flow. By symmetry,
cPE = 1- cPB and cPD = 1- cPe. Then, by Ohm's law, since the total current
leaving Band C must vanish

(cPB - cPA) + (cPB - cPE) + 2(cPB - cPe) = 0,

2(cPe - cPF) + 2(cPe - cPB) = O.

Hence, cPB = 1/2 and cPe = 1/4, and the associated flow is given by ~AB =

1/2, ~Be = 1/2, ~eF = 1/2, ~BE = O. In fact, we were lucky - no scaling
was necessary.

Note that the node capacities do not affect the problem we considered.
Let us arbitrarily assign to each node a capacity 1. Then there is an asso­
ciated Markov chain and, according to (4.10), the equilibrium potential is
given by

cPi = Ei(lxT=A) = JP>i(XT = A)

where T is the hitting time of {A, F}. Different node capacities result
in different Markov chains, but the same jump chain and hence the same
hitting probabilities.

Here is a general result expressing equilibrium potentials, flows and
charges in terms of the associated Markov chain.

Theorem 4.3.2. Consider a finite network with external connections at
two nodes A and B, and the associated Markov chain (Xt)t~o.

(a) The unique equilibrium potential cP with cPA = 1 and cPB = 0 is given
by

where TA and TB are the hitting times of A and B.
(b) The unique equilibrium flow ~ with ~A = 1 and ~B = -1 is given by

where r ij is the number of times that (Xt)t~O jumps from i to j before
hitting B.
(c) The charge X associated with ~, subject to XB = 0, is given by
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Proof. The formula for ¢ is a special case of (4.10), where c = 0 and f =
l{A}. We shall prove (b) and (c) together. Observe that if X o = A then

if i = A

if i ~ {A,B}

if i = B

so if ~ij = EA(rij - r ji ) then ~ is a unit flow from A to B. We have

00

roo = '""'1{,-," _0,-," 0 N}
'1,) L-J ~n-'I,,~n+l=),n< B

n=O

where N B is the hitting time of B for the jump chain (Yn)n~O. So, by the
Markov property of the jump chain

00

lEA(rij) = LIPA(Yn = i, Yn +! = j, n < NB)
n=O

00

= LIPA(Yn = i,n < NB)1rij.
n=O

Set
fTB

Xi = lEA 10 l{Xt=i}dt

and consider the associated potential'l/Ji = Xi/1ri. Then

00

Xiqij = XiQi 1rij = LIPA(Yn = i,n < NB)1rij = lEA(rij)
n=O

so

('l/Ji -'l/Jj)aij = Xiqij - Xjqij = ~ij·

Hence'l/J = ¢, ~ is the equilibrium unit flow and X the associated charge, as
required. D

The interpretation of potential theory in terms of electrical networks
makes it natural to consider notions of energy. We define for a potential
¢ = (¢i : i E I) and a flow ~ = (~ij : i, j E I)

E(<p) = l L (<Pi - <pj)2aij ,
i,jEI

I(r) = l L ,fj aijl.
i,jEI



4.3 Electrical networks 155

The 1/2 means that each wire is counted once. When ¢ and ~ are related
by Ohm's law we have

E(¢) = l L (¢i - ¢j)rij = I(r)
i,jEI

and E(¢) is found physically to give the rate of dissipation of energy, as heat,
by the network. Moreover, we shall see that certain equilibrium potentials
and flows determined by Ohm's law minimize these energy functions. This
characteristic of energy minimization can indeed replace Ohm's law as the
fundamental physical principle.

Theorem 4.3.3. The equilibrium potential and flow may be determined
as follows.

(a) The equilibrium potential ¢ = (¢i : i E I) with boundary values
¢i = Ii for i E 8D and no current sources in D is the unique solution
to

minimize E (¢)

subject to ¢i = fi for i E aD.

(b) The equilibrium flow r = (rij : i, j E I) with current sources ri = 9i

for i E D and boundary potential zero is the unique solution to

minimize I (~)

subject to ~i = 9i for i E D.

Proof. For any potential ¢ = (¢i : i E I) and any flow ~ = (~ij : i,j E I)
we have

L (¢i - ¢j)rij = 2L ¢i'Yi.
i,jEI iEI

(a) Denote by ¢ = (¢i : i E I) and by ~ = (~ij : i,j E I) the equilibrium
potential and flow. We have ~i = 0 for i E D. We can write any potential
in the minimization problem in the form ¢ + c, where c = (ci : i E I) with
Ci = 0 for i E aD. Then

L (Ei - Ej)(¢i - ¢j)aij = L (Ei - Ej)rij = 2 LEi'Yi = 0
i,j EI i,j EI iEI

so
E(¢ + c) = E(¢) + E(c) ~ E(¢)

with equality only if c = o.
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(b) Denote by cP = (cPi : i E I) and by ~ = (~ij : i, j E I) the equilibrium
potential and flow. We have cPi = 0 for i E aD. We can write any flow in
the minimization problem in the form ~ + 8, where 8 = (8ij : i,j E I) is a
flow with 8i = 0 for i E D. Then

L 'Yij8ijai/ = L (¢i - ¢j )8ij = 2 L ¢i8i = 0,
i,jEI i,jEI iEI

so

I(~ + 8) = I(~) + 1(8) ~ 1(8)

with equality only if 8 = o. D

The following reformulation of part (a) of the preceding result states that
harmonic functions minimize energy.

Corollary 4.3.4. Suppose that ¢ = (¢i : i E I) satisfies

{
Q¢ = 0 in D

cP = I in aD.
Then cP is the unique solution to

minimize E (¢ )

subject to ¢ = f in aD.
An important feature of electrical networks is that networks with a small

number of external connections look like networks with a small number
of nodes altogether. In fact, given any network, there is always another
network of wires joining the externally connected nodes alone, equivalent
in its response to external flows and potentials.

Let J ~ I. We say that a = (aij : i,j E J) is an effective conductivity on
J if, for all potentials I = (Ii : i E J), the external currents into J when J
is held at potential I are the same for (J, a) as for (I, a). We know that I
determines an equilibrium potential ¢ = (cPi : i E I) by

{
L.jEI(¢i - ¢j)aij : 0 for ~ ~ J

cPi - Ii for 'I, E J.

Then a is an effective conductivity if, for all I, for i E J we have

L(¢i - ¢j)aij = :E(Ji - Ji) aij'
JEI jEJ

For a conductivity matrix a on J, for a potential I = (Ii : i E J) and a flow
8 = (8ij : i, j E J) we set

- 1" 2E(/) = 2 L.J (Ii - Ij) aij,
i,jEJ

1(8) = ~ L 8fjui?·
i,jEJ
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Theorem 4.3.5. There is a unique effective conductivity a given by

aij = aij + L aik<P{
k~J

where for each j E J, q) = (¢~ : i E I) is the potential defined by
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{
~kEI(<p1 - <p{)ai~ = 0

¢~ = 8ij

for i tf- J

for i E J.
(4.11)

Moreover, a is characterized by the Dirichlet variational principle

E(/) = inf E(¢),
<Pi==fi on J

and also by the Thompson variational principle

inf 1(8) = inf I(~).
Oi==gi on J {Jgi on

"Yi== o off J

Proof. Given I = (Ii: i E J), define ¢ = (¢i : i E I) by

<Pi = L 1i<p1
jEJ

then ¢ is the equilibrium potential given by

{

~jEI aij(¢i - ¢j) = 0

¢i = Ii

and, by Corollary 4.3.4, ¢ solves

for i fj. J

for i E J,

minimize E (¢)

subject to ¢i = Ii for i E J.

We have, for i E J

Z:=aij<Pj = z:=aijfj + z:=z:=aik<p{fj = z:=aijfjo
JEI jEJ k~JjEJ jEJ

In particular, taking I == 1 we obtain

Laij = Laijo
JEI jEJ
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Hence we have equality of external currents:

2)cPi - cPj )aij = 'r)1i - Ii )Uij ·

JEI jEJ

Moreover, we also have equality of energies:

L (cPi - cPj)2aij = 2 L cPi L(cPi - cPj)aij
i,jEI iEI JEI

= 2 L Ii LUi -!i)Uij = L Ui _!i)2Uij .
iEJ jEJ i,jEJ

Finally, if gij = (Ii - Ij )aij and ~ij = (¢i - ¢j )aij, then

L "Yljai/ = L (cPi - cPj)2aij
i,jEI i,jEI

= L (Ii - Ii )2Uij = L gfjUi/,
i,jEJ i,jEJ

so, by Theorem 4.3.3, for any flow 8 = (8ij : i,j E I) with 8i = gi for i E J
and bi = 0 for i ¢. J, we have

L ~2 -1 > L 2 --1v··a·· g··a··
~J ~J - ~J ~J •

i,jEI i,jEJ

o

Effective conductivity is also related to the associated Markov chain
(Xt)t~O in an interesting way. Define the time spent in J

At = it l{Xs EJ}ds

and a time-changed process (Xt)t~O by

X t = Xr(t)

where
r(t) = inf{s ~ 0 : As > t}.

We obtain (Xt)t~O by observing (Xt)t~O whilst in J, and stopping the clock
whilst (Xt)t~O makes excursions outside J. This is really a transformation
of the jump chain. By applying the strong Markov property to the jump
chain we find that (Xt)t~O is itself a Markov chain, with jump matrix IT
given by

1'fij = 'lrij + L'lrik¢k
k~J

for i,j E J,
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¢{ = JP>k(XT = j)

and T denotes the hitting time of J. See Example 1.4.4. Hence (Xt)t~O

has Q-matrix given by

Qij = qij + L qik¢{
k~J

Since ¢-i = (¢{ : k E I) is the unique solution to (4.11), this shows that

so (Xt)t~O is the Markov chain on J associated with the effective conduc­
tivitya.

There is much more that one can say, for example in tying up the non­
equilibrium behaviour of Markov chains and electrical networks. More­
over, methods coming from one theory one provide insights into the other.
For an entertaining and illuminating account of the subject, you should
see Random Walks and Electrical Networks by P. G. Doyle and J. L. Snell
(earus Mathematical Monographs 22, Mathematical Association of Amer­
ica, 1984).

4.4 Brownian motion

Imagine a symmetric ran'dom walk in Euclidean space which takes infinitesi­
mal jumps with infinite frequency and you will have some idea of Brownian
motion. It is named after a botanist who observed such a motion when
looking at pollen grains under a microscope. The mathematical object now
called Brownian motion was actually discovered by Wiener, and is also
called the Wiener process.

A discrete approximation to Euclidean space ]Rd is provided by

where c is a large positive number. The simple symmetric random walk
(Xn)n~O on Zd is a Markov chain which is by now quite familiar. We shall
show that the scaled-down and speeded-up process

X (c) - -1/2X
t - c ct

is a good approximation to Brownian motion. This provides an elementary
way of thinking about Brownian motion. Also, it makes it reasonable to
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suppose that some properties of the random walk carryover to Brownian
motion. At the end of this section we state some results which confirm that
this is true to a remarkable extent.

Why is space rescaled by the square-root of the time-scaling? Well, if
we hope that xic

) converges in some sense as c ~ 00 to a non-degenerate

limit, we will at least want IE[lxic
) 1

2] to converge to a non-degenerate limit.
For ct E Z+ we have

so the square-root scaling gives

which is independent of c.

We begin by defining Brownian motion, and then show that this is not
an empty definition; that is to say, Brownian motions exist.

A real-valued random variable is said to have Gaussian distribution with
mean 0 and variance t if it has density function

cPt(X) = (27T"t)-1/2 exp{ _x2/2t}.

The fundamental role of Gaussian distributions in probability derives from
the following result.

Theorem 4.4.1 (Central limit theorem). Let Xl, X 2 , ••• be a se­
quence of independent and identically distributed real-valued random vari­
ables with mean 0 and variance t E (0,00). Then, for all bounded continu­
ous functions f, as n ~ 00 we have

We shall take this result and a few other standard properties of the
Gaussian distribution for granted in this section. There are many introduc­
tory texts on probability which give the full details.

A real-valued process (Xt)t;:::o is said to be continuous if

lP({w : t..-+ Xt(w) is continuous}) = 1.

A continuous real-valued process (Bt)t;:::o is called a Brownian motion if
Bo = 0 and for all 0 = to < tl < ... < tn the increments
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are independent Gaussian random variables of mean 0 and variance
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The conditions made on (Bt)t~o are enough to determine all the probabil­
ities associated with the process. To put it properly, the law of Brownian
motion, which is a measure on the set of continuous paths, is uniquely de­
termined. However, it is not obvious that there is any such process. We
need the following result.

Theorem 4.4.2 (Wiener's theorem). Brownian motion exists.

Proof. For N = 0,1,2, ... , denote by D N the set of integer multiples of
2-N in [0,00), and denote by D the union of these sets. Let us say that
(Bt : t E D N ) is a Brownian motion indexed by D N if B o = 0 and for all
o= to < tl < ... < t n in D N the increments

are independent Gaussian random variables of mean 0 and variance

We suppose given, for each tED, an independent Gaussian random variable
yt of mean 0 and variance 1. For t E Do = Z+ set

then (Bt : t E Do) is a Brownian motion indexed by Do. We shall show
how to extend this process successively to Brownian motions (Bt : tEDN )
indexed by D N . Then (Bt : tED) is a Brownian motion indexed by D.
Next we shall show that (Bt : tED) extends continuously to t E [0,00),
and finally check that the extension is a Brownian motion.

Suppose we have constructed (Bt : t E D N - 1 ), a Brownian motion in­
dexed by D N- 1 • For t E DN\DN- 1 set r = t - 2-N

S = t + 2-N so that
s, t E D N - 1 and define

Zt = 2-(N+l)/2yt,

B t = ~(Br + Bs) + Zt·

We obtain two new increments:

B t - B r = ~ (Bs - B r ) + Zt,

Bs - Bt = ~(Bs - Br) - Zt.
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E[(Bt - B r )2] = E[(Bs - Bt )2] = ~2-(N-I) + 2-(N+I) = 2-N,

E[(Bt - Br)(Bs - B t )] = ~2-(N-I) - 2-(N+I) = o.

The two new increments, being Gaussian, are therefore independent and of
the required variance. Moreover, being constructed from B s - Br and yt,

they are certainly independent of increments over intervals disjoint from
(r, s). Hence (Bt : tEDN) is a Brownian motion indexed by D N, as
required. Hence, by induction, we obtain a Brownian motion (Bt : tED).

For each N denote by (BiN))t~O the continuous process obtained by

linear interpolation from (Bt : t E D N). Also, set ziN) = BiN) - BiN-I).

For t E D N- I we have ziN) = O. For t E DN\DN- I , by our construction
we have

with yt Gaussian of mean 0 and variance 1. Set

M N = sup IziN)I.
tE[O,I]

Then, since (ZiN))t~O interpolates linearly between its values on D N, we
obtain

M N = sup 2-(N+I)/2Iytl.

tE(DN \DN -l)n[o,l]

There are 2N
- I points in (DN\DN- I ) n [0,1]. So for A > 0 we have

For a random variable X ~ 0 and p > 0 we have the formula

Hence

2P(N+l)/2E(M~)= 100

p,Xp- 1IP(2(N+l)/2 M N > 'x)d'x

~ 2N
-

1100

p,Xp-1IP(IY11 > 'x)d'x = 2N
-

1E(IY1IP)
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and hence, for any p > 2
00 00

ELMn= LE(MN )

N=O N=O
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00 00:::; L E(MKr)l/P :::; E(IY1IP)1/p L (2(p-2)/2p )-N < 00.

N=O N=O

It follows that, with probability 1, as N ~ 00

BiN) = BiO) + zi1
) + ... + ziN)

converges uniformly in t E [0,1], and by a similar argument uniformly for

t in any bounded interval. Now BiN) eventually equals Bt for any tED
and the uniform limit of continuous functions is continuous. Therefore,
(Bt : tED) has a continuous extension (Bt)t,?:o, as claimed.

It remains to show that the increments of (Bt)t,?:o have the required joint
distribution. But given 0 < t 1 < ... < t n we can find sequences (t''k)mEN
in D such that 0 < t1 < ... < t~ for all m and tf: ~ tk for all k. Set
to = to = o. We know that the increments

are Gaussian of mean 0 and variance

tr - t(f, · · · ,t~ - t~-l·

Hence, using continuity of (Bt)t,?:o we can let m ~ 00 to obtain the desired
distribution for the increments

D

Having shown that Brownian motion exists, we now want to show how
it appears as a universal scaling limit of random walks, very/much as the
Gaussian distribution does for sums of independent random variables.

-
Theorem 4.4.3. Let (Xn)n,?:O be a discrete-time real-valued random walk
with steps of mean 0 and variance 0'2 E (0,00). For c > 0 consider the
rescaled process

X (c) - -1/2X
t - c ct

where the value of X ct when ct is not an integer is found by linear interpo­
lation. Then, for all m, for all bounded continuous functions f : jRm ~ jR

and all 0 ~ tl < ... < tm , we have

E[f(Xi~),··· ,Xi~)] -tE[f(aBh ,· .. ,aBtm )]

as c ~ 00, where (Bt).t,?:o is a Brownian motion.



164 4. Further theory

Proof The claim is that (xi~), ... ,xi~) converges weakly to
(aBtl, ... ,aB trn ) as c ~ 00. In the proof we shall take for granted some
basic properties of weak convergence. First define

X-(e) - -I/2X
t - e [et]

where (et] denotes the integer part of ct. Then

\(x (e) X(e)) (X-(e) X-(e))\ -I/2\('V: 'V:)\
t 1 ,..., trn - t 1 ,..., trn :::; e .L [et 1 ] +1, · .. ,.L [etn]+1

where Yn denotes the nth step of (Xn)n~O. The right side converges weakly

to 0, so it suffices to prove the claim with .i~e) replacing xie).

Consider now the increments

U (e) - X-(e) - X-(e) Z (B B )
k - tk tk-l' k = a tk - tk-l

for k = 1, ... , m. Since .ide) = B o = 0 it suffices to show that

(Uie), . .. ,U~)) converges weakly to (ZI, ... ,Zm). Then since both sets of

increments are independent, it suffices to show that U~e) converges weakly
to Zk for each k. But

[etk]
U~c) = C-

1/2 L Yn rv (C-1/2Nk(C)1/2)Nk(C)-1/2(Yi +... +YN(c»)
n=[etk_-l]+1

where rv denotes identity of distribution and Nk(e) = [etk] - [etk-I]. By
the central limit theorem Nk(e)-I/2(YI + ... + YN(e)) converges weakly

to (tk - tk_l)-1/2Zk, and (C-1/ 2Nk(C)1/2) -t (tk - tk_l)1/2. Hence U~c)

converges weakly to Zk, as required. D

To summarize the last two results, we have shown, using special proper­
ties of the Gaussian distribution, that there is a continuous process (Bt)t~o

with stationary independent increments and such that Bt is Gaussian of
mean 0 and variance t, for each t ~ o. That was Wiener's theorem. Then,
using the central limit theorem applied to the increments of a rescaled ran­
dom walk, we established a sort of convergence to Brownian motion. There
now follows a series of related remarks.

Note the similarity to the definition of a Poisson process as a right­
continuous integer-valued process (Xt)t~O starting from 0, having station­
ary independent increments and such that X t is Poisson of parameter At
for each t ~ O.

Given d independent Brownian motions (Bi )t~o, . .. ,(Bt)t~o, let us con­
sider the JRd-valued process B t = (Bi, ... ,Bt). We call (Bt)t~o a Brownian



4.4 Brownian motion 165

motion in ]Rd. There is a multidimensional version of the central limit the­
orem which leads to a multidimensional version of Theorem 4.4.3, with no
essential change in the proof. Thus if (Xn)n~O is a random walk in ]Rd with
steps of mean 0 and covariance matrix

and if V is finite, then for all bounded continuous functions f : (]Rd)m ~ ]R,

as c ~ 00 we have

Here are two examples. We might take (Xn)n~O to be the simple symmetric
random walk in Z3, then V = ~I. Alternatively, we might take the compo­
nents of (Xn)n~O to be three independent simple symmetric random walks
in Z, in which case V = I. Although these are different random walks, once
the difference in variance is taken out, the result shows that in the scaling
limit they behave asymptotically the same. More generally, given a random
walk with a complicated step distribution, it is useful to know that on large
scales all one needs to calculate is the variance (or covariance matrix). All
other aspects of the step distribution become irrelevant as c ~ 00.

The scaling used in Theorem 4.4.3 suggests the following scaling invari­
ance property of Brownian motion (Bt)t>o, which is also easy to check from

the definition. For any c > 0 the proces; (Bic)k,~o defined by

B (e) - -1/2B
t - C et

is a Brownian motion. Thus Brownian motion appears as a fixed point of the
scaling transformation, which attracts all other finite variance symmetric
random walks as c ~ 00.

The sense in which we have shown that (Xie))t~o converges to Brownian
motion is very weak, and one can with effort prove stronger forms of con­
vergence. However, what we have proved is strong enough to ensure that
(Xie))t~o does not converge, in the same sense, to anything else.

The discussion to this point has not really been about the Markov prop­
erty, but rather about processes with independent increments. To remedy
this we must first define Brownian motion starting from x: this is simply
any process (Bt)t~o such that Bo = x and (Bt - BO)t~o is a Brownian mo­
tion (starting from 0). As a limit of Markov chains it is natural to look in
Brownian motion for the structure of a Markov process. By analogy with
continuous-time Markov chains we look for a transition semigroup (Pt)t~O
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and a generator G. For any bounded measurable function f : ]Rd ~ ]R we
have

lEx[J(Bt )] = lEo[J(x + Bt )] = { f(x + Y)¢t(Yd··· ¢t(Yd)dYl .. , dYdJRd
= ( p(t, x, y)f(y)dyJRd

where
p(t, x, y) = (27rt)-d/2 exp{-Iy - xI 2/2t}.

This is the transition density for Brownian motion and the transition semi­
group is given by

(Ptf)(x) = ( p(t, x, y)f(y)dy = lEx [f(Bt )].JRd
To check the semigroup property PsPt = Ps+t we note that

Ex[f(Bs+t )] = Ex [f(Bs + (Bs+t - B s))]

= Ex [Ptf(Bs)] = (PsPtf)(x)

where we first took the expectation over the independent increment
B s+t - B s . For t > 0 it is easy to check that

:t p(t, x, y) = !~xp(t, x, y)

where
a2 a2

~x = a 2 + · · · + a 2·
Xl xd

Hence, if f has two bounded derivatives, we have

a
8

(Ptf)(x) = { !~xp(t, x, y)f(y)dy
t JRd

= { !~yp(t, x, y)f(y)dyJRd
= ( p(t, x, y)(!~J)(y)dyJRd
= Ex[(~~f)(Bt)] ~ ~~f(x)

as t ! O. This suggests, by analogy with continuous-time chains, that the
generator, a term we have not defined precisely, should be given by

G=!~.
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Where formerly we considered vectors (fi : i E I), now there are functions
f : jRd ~ jR, required to have various degrees of local regularity, such as
measurability and differentiability. Where formerly we considered matrices
Pt and Q, now we have linear operators on functions: Pt is an integral
operator, G is a differential operator.

We would like to explain the appearance of the Laplacian ~ by refer­
ence to the random walk approximation. Denote by (Xn)n~O the simple
symmetric random walk in tld and consider for N == 1,2, ... the rescaled
process

xiN) == N- I
/

2 X Nt , t == 0, liN, 2/N, . ...

For a bounded continuous function f : jRd ~ jR, set

(pt(N) f)(x) == IEx[f(XiN))], X E N- I/271d •

The closest thing we have to a derivative in t at 0 for (pt(N))t=O,I/N,2/N, ...
is

( (N) )) _ [ ( (N) ) ((N))]N PI/Nf - f (x - NIEx f X I / N - f X o

== NIENl/2x [f(N- I/2Xl) - f(N- I/ 2X O)]

= (N/2){f(x - N- I
/ 2 ) - 2f(x) + f(x +N- I

/ 2 )}.

If we assume that f has two bounded derivatives then, by Taylor's theorem,
as N ~ 00,

f(x - N- I / 2 ) - 2f(x) + f(x +N- I / 2 ) == N-I(~f(x) + o(N)),

so

N(pi;Jf - f)(x) -t ~~f(x).

We finish by stating some results about Brownian motion which empha­
sise how much of the structure of Markov chains carries over. You will notice
some weasel words creeping in, such as measurable, continuous and differ­
entiable. These are various sorts of local regularity for functions defined on
the state-space jRd. They did not appear for Markov chains because a dis­
crete state-space has no local structure. You might correctly guess that the
proofs would require additional real analysis, relative to the corresponding
results for chains, and a proper measure-theoretic basis for the probabil­
ity. But, this aside, the main ideas are very similar. For further details
see, for example, Probability Theory - an analytic view by D. W. Stroock
(Cambridge University Press, 1993), or Diffusions, Markov Processes and
Martingales, Volume 1: Foundations by L. C. G. Roger.s and David Williams
(Wiley, Chichester, 2nd edition 1994).

First, here is a result on recurrence and transience.
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Theorem 4.4.4. Let (Bt)t~o be a Brownian motion in jRd.

(i) If d = 1, then

JP>({t ~ 0: B t = O} is unbounded) = 1.

(ii) If d = 2, then
JP>(Bt = 0 for some t > 0) = 0

but, for any € > 0

JP>({t ~ 0 : IBt I < €} is unbounded) = 1.

(iii) If d = 3, then for any N < 00

JP>(I B t I~ 00 as t ~ 00) = 1.

It is natural to compare this result with the facts proved in Section 1.6,
that in Z and Z2 the simple symmetric random walk is recurrent, whereas
in Z3 it is transient. The results correspond exactly in dimensions one and
three. In dimension two we see the fact that for continuous state-space
it makes a difference to demand returns to a point or to arbitrarily small
neighbourhoods of a point. If we accept this latter notion of recurrence the
correspondence extends to dimension two.

The invariant measure for Brownian motion is Lebesgue measure dx.
This has infinite total mass so in dimensions one and two Brownian motion
is only null recurrent. So that we can state some results for the positive
recurrent case, we shall consider Brownian motion in jRd projected onto the
torus T d = jRd /Zd. In dimension one this just means wrapping the line
round a circle of circumference 1. The invariant measure remains Lebesgue
measure but this now has total mass 1. So the projected process is positive
recurrent and we can expect convergence to equilibrium and ergodic results
corresponding to Theorems 1.8.3 and 1.10.2.

Theorem 4.4.5. Let (Bt)t>o be a Brownian motion in jRd and let
f : jRd ~ jR be a continuous periodic function, so that

f(x + z) = f(x) for all z E Zd.

Then for all x E jRd, as t ~ 00, we have

lEx[f(Bt )] -t 1= [ f(z)dz
J[O,l]d

and, moreover

JI»x (~ it f(Bs)ds -t 1ast -t 00) = 1.

The generator !~ of Brownian motion in jRd reappears as it should in
the following martingale characterization of Brownian motion.
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Theorem 4.4.6. Let (Xt)t~O be a continuous ]Rd-valued random pro­
cess. Write (Ft )t2::o for the filtration of (Xt)t~o. Then the following are
equivalent:

(i) (Xt )t2::o is a Brownian motion;

(ii) for all bounded functions f which are twice differentiable with
bounded second derivative, the following process is a martingale:

This result obviously corresponds to Theorem 4.1.2. In case you are unsure,
a continuous time process (Mt )t2::o is a martingale if it is adapted to the
given filtration (Ft )t2::o, if JEIMtl < 00 for all t, and

whenever s :::; t and A E F8 •

We end with a result on the potentials associated with Brownian motion,
corresponding very closely to Theorem 4.2.3 for Markov chains. These
potentials are identical to those appearing in Newton's theory of gravity,
as we remarked in Section 4.2.

Theorem 4.4.7. Let D be an open set in ]Rd with smooth boundary aD.
Let c : D ~ [0, 00) be measurable and let f : aD ~ [0,00) be continuous.
Set

<jJ(x) = JEx [IT
c(Bt)dt + f(XT )IT<oo]

where T is the hitting time of aD. Then

(i) ¢ if finite belongs to C2 (D) n C(D) and satisfies

in D
in aD;

(4.12)

(ii) if 1/J E C2 (D) n C(D) and satisfies

{
-~~1/J ~ c in D

1/J ~ f in aD

and 'l/J ~ 0, then 'l/J ~ ¢;
(iii) if ¢(x) = 00 for some x, then (4.12) has no finite solution;

(iv) if JPx(T < 00) = 1 for all x, then (4.12) has at most one bounded
solution in C2 (D) n C(D).



5

Applications

Applications of Markov chains arise in many different areas. Some have
already appeared to illustrate the theory, from games of chance to the
evolution of populations, from calculating the fair price for a random reward
to calculating the probability that an absent-minded professor is caught
without an umbrella. In a real-world problem involving random processes
you should always look for Markov chains. They are often easy to spot.
Once a Markov chain is identified, there is a qualitative theory which limits
the sorts of behaviour that can occur - we know, for example, that every
state is either recurrent or transient. There are also good computational
methods - for hitting probabilities and expected rewards, and for long-run
behaviour via invariant distributions.

In this chapter we shall look at five areas of application in detail: bi­
ological models, queueing models, resource management models, Markov
decision processes and Markov chain Monte Carlo. In each case our aim is
to provide an introduction rather than a systematic account or survey of
the field. References to books for further reading are given in each section.

5.1 Markov chains in biology

Randomness is often an appropriate model for systems of high complex­
ity, such as are often found in biology. We have already illustrated some
aspects of the theory by simple models with a biological interpretation.
See Example 1.1.5 (virus), Exercise 1.1.6 (octopus), Example 1.3.4 (birth­
and-death chain) and Exercise 2.5.1 (bacteria). We are now going to give
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some more examples where Markov chains have been used to model bio­
logical processes, in the study of population growth, epidemics and genetic
inheritance. It should be recognised from the start that these models are
simplified and somewhat stylized in order to make them mathematically
tractable. Nevertheless, by providing quantitative understanding of various
phenomena they can provide a useful contribution to science.

Example 5.1.1 (Branching processes)

The original branching process was considered by Galton and Watson in the
1870s while seeking a quantitative explanation for the phenomenon of the
disappearance of family names, even in a growing population. Under the
assumption that each male in a given family had a probability Pk of having
k sons, they wished to determine the probability that after n generations
an individual had no male descendents. The solution to this problem is
explained below.

The basic branching process model has many applications to problems
of population growth, and also to the study of chain reactions in chemistry
and nuclear fission. Suppose at time n = 0 there is one individual, who dies
and is replaced at time n = 1 by a random number of offspring N. Suppose,
next, that these offspring also die and are themselves replaced at time n = 2,
each independently, by a random number of further offspring, having the
same distribution as N, and so on. We can construct the process by taking
for each n E N a sequence of independent random variables (N;:)kEN, each
with the same distribution as N, by setting Xo = 1 and defining inductively,
for n 2: 1

X n = Nf + ... + NXn_
1

•

Then X n gives the size of the population in the nth generation. The process
(Xn)n~O is a Markov chain on I = {O, 1,2, ... } with absorbing state o. The
case where P(N = 1) = 1 is trivial so we exclude it. We have

P(Xn = 0 I X n - 1 = i) = P(N = O)i

so if P(N = 0) > 0 then i leads to 0, and every state i 2: 1 is transient. If
P(N = 0) = 0 then P(N 2: 2) > 0, so for i 2: 1, i leads to j for some j > i,
and j does not lead to i, hence i is transient in any case. We deduce that
with probability 1 either X n = 0 for some n or X n ~ 00 as n ~ 00.

Further information on (Xn)n~O is obtained by exploiting "the branching
structure. Consider the probability generating function

00

</J(t) = E(tN
) = :E tkJP(N = k),

k==O
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defined for 0 ~ t ~ 1. Conditional on X n - l = k we have

X n =Nf+···+Nr

so

and so

00

lE(tXn ) = 'LlE(tXn IX n - 1 = k)JP>(Xn - 1 = k) = lE(</>(t)xn - 1
).

k==O

Hence, by induction, we find that E(tXn ) = ¢(n)(t), where ¢(n) is the n-fold

composition ¢ 0 ... 0 ¢. In principle, this gives the entire distribution of
X n, though ¢(n) may be a rather complicated function. Some quantities
are easily deduced: we have

E(Xn) = lim dd lE(tXn ) = lim dd </>(n)(t) = (lim </>'(t)r = p,n,
til t til t til

where J-l = E(N); also

so, since 0 is absorbing, we have

q = P(Xn = 0 for some n) = lim ¢(n)(o).
n--+-oo

Now ¢(t) is a convex function with ¢(1) = 1. Let us set r = inf{t E [0,1] :
¢(t) = t}, then ¢(r) = r by continuity. Since ¢ is increasing and 0 ~ r, we
have ¢(O) ~ r and, by induction, ¢(n)(o) ~ r for all n, hence q ~ r. On the
other hand

q = lim ¢(n+l) (0) = lim ¢(¢(n) (0)) = ¢(q)
n --+- 00 n --+-00

so also q 2:: r. Hence q = r. If ¢'(1) > 1 then we must have q < 1, and if
¢'(1) ~ 1 then since either ¢" = 0 or ¢" > 0 everywhere in [0,1) we must
have q = 1. We have shown that the population survives with positive
probability if and only if J-l > 1, where J-l is the mean of the offspring
distribution.

There is a nice connection between branching processes and random
walks. Suppose that in each generation we replace individuals by their off­
spring one at a time, so if X n = k then it takes k steps to obtain X n +l .
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The population size then performs a random walk (Ym)m~O with step dis­
tribution N - 1. Define stopping times To = 0 and, for n 2: 0

Observe that X n = YTn for all n, and since (Ym)m~O jumps down by at
most 1 each time, (Xn)n>O hits 0 if and only if (Ym)m>O hits O. Moreover- -
we can use the strong Markov property and a variation of the argument of
Example 1.4.3 to see that, if

qi = P(Ym = 0 for some m IYo = i)

then qi = qf for all i and so

00

ql = P(N = 0) + L qfP(N = i) = ¢(ql)'
k==l

Now each non-negative solution of this equation provides a non-negative
solution of the hitting probability equations, so we deduce that ql is the
smallest non-negative root of the equation q = ¢(q), in agreement with the
generating function approach.

The classic work in this area is The Theory of Branching Processes by
T. E. Harris (Dover, New York, 1989).

Example 5.1.2 (Epidemics)

Many infectious diseases persist at a low intensity in a population for long
periods. Occasionally a large number of cases arise together and form an
epidemic. This behaviour is to some extent explained by the observation
that the presence of a large number of infected individuals increases the
risk to the rest of the population. The decline of an epidemic can also be
explained by the eventual decline in the number of individuals susceptible
to infection, as infectives either die or recover and are then resistant to fur­
ther infection. However, these naive explanations leave unanswered many
quantitative questions that are important in predicting the behaviour of
epidemics.

In an idealized population we might suppose that all pairs of individu­
als make contact randomly and independently at a common rate, whether
infected or not. For an idealized disease we might suppose th~t on contact
with an infective, individuals themselves become infective and remain so for
an exponential random time, after which they either die or recover. These
two possibilities have identical consequences for the progress of the epi­
demic. This idealized model is obviously unrealistic, but it is the simplest
mathematical model to incorporate the basic features of an epidemic.
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We denote the number of susceptibles by St and the number of infectives
by It. In the idealized model, X t = (St, It) performs a Markov chain on
(Z+)2 with transition rates

q(s,i)(s-i,i+l) = Asi, q(s,i)(s,i-l) = /-li

for some .x, /-l E (0, 00). Since St + It does not increase, we effectively
have a finite state-space. The states (s,O) for s E Z+ are all absorbing
and all the other states are transient; indeed all the communicating classes
are singletons. The epidemic must therefore eventually die out, and the
absorption probabilities give the distribution of the number of susceptibles
who escape infection. We can calculate these probabilities explicitly when
So + 10 is small.

Of greater concern is the behaviour of an epidemic in a large population,
of size N, say. Let us consider the proportions sf = St/N and if' = It/N
and suppose that .x = v/N, where v is independent of N. Consider now a
sequence of models as N ~ 00 and choose s~ ~ So and i~ ~ io. It can
be shown that as N ~ 00 the process (sf', if') converges to the solution
(St, it) of the differential equations

(d/dt)st = -vstit

(d/dt)i t = vStit - /-lit

starting from (so, io). Here convergence means that E[I(sf', if') - (St, it) I] ~
o for all t 2:: o. We will not prove this result, but will give an example of
another easier asymptotic calculation.

Consider the case where So = N -1,10 = 1, .x = l/N and /-l = O. This has
the following interpretation: a rumour is begun by a single individual who
tells it to everyone she meets; they in turn pass the rumour on to everyone
they meet. We assume that each individual meets another randomly at
the jump times of a Poisson process of rate 1. How long does it take until
everyone knows the rumour? If i people know the rumour, then N - i do
not, and the rate at which the rumour is passed on is

qi = i(N - i)/N.

The expected time until everyone knows the rumour is then

N-l 1 N-l N N-l(l 1) N-l 1
'" qi = '" . . = '" -=- +-. = 2 '" -=- rv 210gN~ ~ ~(N - ~) ~ ~ N - ~ ~ ~
i=l i=l i=l i=l

as N ~ 00. This is not a limit as above but, rather, an asymptotic equiva­
lence. The fact that the expected time grows with N is related to the fact
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that we do not scale /0 with N: when the rumour is known by very few or
by almost all, the proportion of 'infectives' changes very slowly.

The final two examples come from population genetics. They represent
an attempt to understand quantitatively the consequences of randomness
in genetic inheritance. The randomness here might derive from the choice
of reproducing individual, in sexual reproduction the choice of partner, or
the choice of parents' alleles retained by their offspring. (The word gene
refers to a particular chromosomal locus; the varieties of genetic material
that can be present at such a locus are known as alleles.) This sort of
study was motivated in the first place by a desire to find mathematical
models of natural selection, and thereby to discriminate between various
competing accounts of the process of evolution. More recently, as scientists
have gained access to the genetic material itself, many more questions of a
statistical nature have arisen. We emphasise that we present only the very
simplest examples in a rich theory, for which we refer the interested reader
to Mathematical Population Genetics by W. J. Ewens (Springer, Berlin,
1979).

Example 5.1.3 (Wright-Fisher model)

This is the discrete-time Markov chain on {O, 1, ... ,m} with transition
probabilities

In each generation there are m alleles, some of type A and some of type a.
The types of alleles in generation n+1 are found by choosing randomly (with
replacement) from the types in generation n. If X n denotes the number of
alleles of type A in generation n, then (Xn)n~O is a Markov chain with the
above transition probabilities.

This can be viewed as a model of inheritance for a particular gene with
two alleles A and a. We suppose that each individual has two genes, so the
possibilities are AA, Aa and aa. Let us take m to be even with m = 2k.
Suppose that individuals in the next generation are obtained by mating
randomly chosen individuals from the current generation and that offspring
inherit one allele from each parent. We have to allow that both parents
may be the same, and in particular make no requirement that parents be
of opposite sexes. Then if the generation n is, for example.

AA aA AA AA aa,

then each gene in generation n + 1 is A with probability 7/10 and a with
probability 3/10, all independent. We might, for example, get

aa aA Aa AA AA.
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The structure of pairs of genes is irrelevant to the Markov chain (Xn)n~O,

which simply counts the number of alleles of type A.

The communicating classes of (Xn)n~O are {O}, {I, ... ,m - I}, {m}.
States 0 and m are absorbing and {I, ... ,m - 1} is transient. The hit­
ting probabilities for state m (pure AA) are given by

This is obvious when one notes that (Xn)n~O is a martingale; alternatively
one can check that

m

hi = LPijhj .
j==o

According to this model, genetic diversity eventually disappears. It is
known, however, that, for p E (0,1), as m ~ 00

lEpm(T) ~ -2m{(1 - p) log(l - p) + plogp}

where T is the hitting time of {O, m}, so in a large population diversity does
not disappear quickly.

Some modifications are possible which model other aspects of genetic
theory. Firstly, it may be that the three genetic types AA, Aa, aa have a
relative selective advantage given by lX, (3, ~ > 0 respectively. This means
that the probability of choosing allele A when X n = i is given by

'l/J. - a(ijm)2 + (lj2)(3i(m - i)jm2

~ - a(ijm)2 + (3i(m - i)jm2 + ,((m - i)jm)2

and the transition probabilities are

Secondly, we may allow genes to mutate. Suppose A mutates to a with
probability u and a mutates to A with probability v. Then the probability
of choosing A when X n = i is given by

¢i = {i(l - u) + (m - i)v}/m

and
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With u, v > 0, the states 0 and m are no longer absorbing, in fact the chain
is irreducible, so attention shifts from hitting probabilities to the invariant
distribution 7r. There is an exact calculation for the mean of 7r: we have

m m

p, = L i7ri = E7r (XI) = L 7riEi(X1)
i=O i=O
m m

= 2: m7ri<Pi = 2:{i(l - u) + (m - i)V}7ri = (1 - u)p, + mv - vp,
i=O i=O

so that

J-L = mv/(u + v).

Example 5.1.4 (Moran model)

The Moran model is the birth-and-death chain on {O, 1, ... ,m} with tran­
sition probabilities

Pi,i-l = i(m - i)/m2, Pii = (i2 + (m - i)2)/m2, Pi,i+l = i(m - i)/m2.

Here is the genetic interpretation: a population consists of individuals of
two types, a and A; we choose randomly one individual from the population
at time n, and add a new individual of the same type; then we choose, again
randomly, one individual from the population at time n and remove it; so
we obtain the population at time n +1. The same individual may be chosen
each time, both to give birth and to die, in which case there is no change
in the make-up of the population. Now, if X n denotes the number of type
A individuals in the population at time n, then (Xn)n~O is a Markov chain
with transition matrix P.

There are some obvious differences from the Wright-Fisher model: firstly,
the Moran model cannot be interpreted in terms of a species where genes
come in pairs, or where individuals have more than one parent; secondly in
the Moran model we only change one individual at a time, not the whole
population. However, the basic Markov chain structure is the same, with
communicating classes {O}, {I, . . . ,m - I}, {m }, absorbing states 0 and m
and transient class {I, ... ,m - I}. The Moran model is reversible, and,
like the Wright-Fisher model, is a martingale. The hitting probabilities are
given by

IPi(Xn = m for some n) = i/m.

We can also calculate explicitly the mean time to absorption
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where T is the hitting time of {O, m}. The simplest method is first to fix j
and write down equations for the mean time kf spent in j, starting from i,
before absorption:

kf = bij + (Pi,i-1 kt-1 +Piikt +Pi,i+1 kt+1) for i = 1, ... ,m - 1

kg = kin = 0.

Then, for i = 1, ... ,m - 1

so that
. {(i/j)k;

kf = ((m-i)/(m-j))k;

where k; is determined by

for i ~ j

for i ~ j

(
m- j -l j-l). m 2

---- -2+-- k~ =----
m-j j j j(m-j)

which gives k; = m. Hence

m-1 { i ( . ) m-1. }
ki=Lkf=m L m=z. + L ~ ·

j=1 j=1 m J j=i+1 J

As in the Wright-Fisher model, one is really interested in the case where
m is large, and i = pm for some P E (0,1). Then

mp 1 m-1 1
m-

2
kpm = (1- p) L m _ . + P L ~ -t -(1- p) log(1- p) - plogp

j==1 J j==mp+1 J

as m ~ 00. So, as m ~ 00

Epm(T) ~ -m2 {(1 - p) 10g(1 - p) + plogp}.

For the Wright-Fisher model we claimed that

Epm(T) ~ -2m{(1 - p) 10g(1 - p) + plogp}

which has the same functional form in p and differs by a factor of m/2.
This factor is partially explained by the fact that the Moran model deals
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with one individual at a time, whereas the Wright-Fisher model changes
all m at once.

Exercises

5.1.1 Consider a branching process with immigration. This is defined, in
the notation of Example 5.1.1, by

X n = N 1
n + ... + Nx

n + Inn-l

where (In)n'?:o is a sequence of independent Z+-valued random variables
with common generating function 'ljJ(t) = E(t1n ). Show that, if X o = 1,
then

n-l

lE(t X n) = ¢(n) ( t) II 1/J (¢ (k) ( t) ) .
k==O

In the case where the number of immigrants in each generation is Poisson
of parameter A, and where P(N = 0) = 1 - P and P(N = 1) = p, find the
long-run proportion of time during which the population is zero.

5.1.2 A species of plant comes in three genotypes AA, Aa and aa. A
single plant of genotype Aa is crossed with itself, so that the offspring has
genotype AA, Aa or aa with probabilities 1/4, 1/2 and 1/4. How long on
average does it take to achieve a pure strain, that is, AA or aa? Suppose it
is desired to breed an AA plant. What should you do? How many crosses
would your procedure require, on average?

5.1.3 In the Moran model we may introduce a selective bias by making
it twice as likely that a type a individual is chosen to die, as compared
to a type A individual. Thus in a population of size m containing i type
A individuals, the probability that some type A is chosen to die is now
i/(i + 2(m - i)). Suppose we begin with just one type A. What is the
probability that eventually the whole population is of type A?

5.2 Queues and queueing networks

Queues form in many circumstances and it is important to be able to pre­
dict their behaviour. The basic mathematical model for- queues runs as
follows: there is a succession of customers wanting service; on arrival each
customer must wait until a server is free, giving priority to earlier arrivals;
it is assumed that the times between arrivals are independent random vari­
ables of the same distribution, and the times taken to serve customers are
also independent random variables, of some other distribution. The main
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quantity of interest is the random process (Xt)t~O recording the number
of customers in the queue at time t. This is always taken to include both
those being served and those waiting to be served.

In cases where inter-arrival times and service times have exponential
distributions, (Xt)t~O turns out to be a continuous-time Markov chain, so
we can answer many questions about the queue. This is the context of
our first six examples. Some further variations on queues of this type have
already appeared in Exercises 3.4.1, 3.6.3, 3.7.1 and 3.7.2.

If the inter-arrival times only are exponential, an analysis is still pos­
sible, by exploiting the memorylessness of the Poisson process of arrivals,
and a certain discrete-time Markov chain embedded in the queue. This is
explained in the final two examples.

In each example we shall aim to describe some salient features of the
queue in terms of the given data of arrival-time and service-time distribu­
tions. We shall find conditions for the stability of the queue, and in the
stable case find means to compute the equilibrium distribution of queue
length. We shall also look at the random times that customers spend wait­
ing and the length of time that servers are continuously busy.

Example 5.2.1 (M/M/I queue)

This is the simplest queue of all. The code means: memoryless inter-arrival
times/memoryless service times/one server. Let us suppose that the inter­
arrival times are exponential of parameter A, and the service times are
exponential of parameter J-l. Then the number of customers in the queue
(Xt)t~O evolves as a Markov chain with the following diagram:

J-l A J-l A
III( •• 111( ••

i i + 1

To see this, suppose at time 0 there are i customers in the queue, where
i > O. Denote by T the time taken to serve the first customer and by A
the time of the next arrival. Then the first jump time J1 is A 1\ T, which is
exponential of parameter A + JL, and XJl = i-I if T < A, XJl = i + 1 if
T > A, which events are independent of J 1 , with probabilities J-l/(A+J-l) and
A/(A+J-l) respectively. If we condition on J1 = T, then A-J1 is exponential
of parameter A and independent of J1: the time already spent waiting for an
arrival is forgotten. Similarly, conditional on J1 = A, T - J1 is exponential
of parameter JL and independent of J 1 . The case where i = 0 is simpler
as there is no serving going on. Hence, conditional on XJl = j, (Xt)t~O
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begins afresh from j at time Jl. It follows that (Xt)t;~o is the claimed
Markov chain. This sort of argument should by now be very familiar and
we shall not spell out the details like this in later examples.

The MIMll queue thus evolves like a random walk, except that it does
not take jumps below o. We deduce that if ,\ > J-l then (Xt)t~O is transient,
that is X t ~ 00 as t ~ 00. Thus if A > J-l the queue grows without limit
in the long term. When A < J-l, (Xt)t~O is positive recurrent with invariant
distribution

So when A < J-l the average number of customers in the queue in equilibrium
is given by

00 00

lE7r{Xt ) = LJP>7r{Xt ;::: i) = L{,\/JL)i = ,\/{JL - ,\).
i=l i=l

Also, the mean time to return to 0 is given by

so the mean length of time that the server is continuously busy is given by

rnO - (llqo) = 1/(J-l - A).

Another quantity of interest is the mean waiting time for a typical customer,
when A < J-l and the queue is in equilibrium. Conditional on finding a queue
of length i on arrival, this is (i + 1)I J-l, so the overall mean waiting time is

A rough check is available here as we can calculate in two ways the expected
total time spent in the queue over an interval of length t: either we multiply
the average queue length by t, or we multiply the mean waiting time by the
expected number of customers At. Either way we get AtlJ-l - A. The first
calculation is exact but we have not fully justified the sec9nd.

Thus, once the queue size is identified as a Markov chain, its behaviour
is largely understood. Even in more complicated examples where exact
calculation is limited, once the Markovian character of the queue is noted
we know what sort of features to look for - transience and recurrence,
convergence to equilibrium, long-run averages, and so on.
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Example 5.2.2 (M/M/s queue)

This is a variation on the last example where there is one queue but there
are S servers. Let us assume that the arrival rate is A and the service
rate by each server is J-l. Then if i servers are occupied, the first service is
completed at the minimum of i independent exponential times of parameter
J-l. The first service time is therefore exponential of parameter iJ-l. The total
service rate increases to a maximum SJ-l when all servers are working. We
emphasise that the queue size includes those customers who are currently
being served. By an argument similar to the preceding example, the queue
size (Xt)t;~o performs a Markov chain with the following diagram:

A J-l A 2J-l A•• ••• •••
012

SJ-l A SJ-l A
• •• •••s s+l

So this time we obtain a birth-and-death chain. It is transient in the
case A > SJ-l and otherwise recurrent. To find an invariant measure we look
at the detailed balance equations

Hence
for i = 0,1, ... ,S

for i = s + 1, S + 2, ....

The queue is therefore positive recurrent when A < SJ-l. There are two cases
when the invariant distribution has a particularly nice form: when S = 1
we are back to Example 5.2.1 and the invariant distribution is geometric of
parameter AIJ-l:

When S = 00 we normalize 1r by taking 1ro = e-)../J-L so that

and the invariant distribution is Poisson of parameter AIJ-l.

The number of arrivals by time t is a Poisson process of rate A. Each
arrival corresponds to an increase in X t , and each departure to a decrease.
Let us suppose that A < SJ-l, so there is an invariant distribution, and
consider the queue in equilibrium. The detailed balance equations hold and
(Xt)t~O is non-explosive, so by Theorem 3.7.3 for any T > 0, (Xt)O~t~T
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and (XT-t)O~t~T have the same law. It follows that, in equilibrium, the
number of departures by time t is also a Poisson process of rate A. This is
slightly counter-intuitive, as one might imagine that the departure process
runs in fits and starts depending on the number of servers working. Instead,
it turns out that the process of departures, in equilibrium, is just as regular
as the process of arrivals.

Example 5.2.3 (Telephone exchange)

A variation on the M/M/s queue is to turn away customers who cannot
be served immediately. This might serve as a simple model for a telephone
exchange, where the maximum number of calls that can be connected at
once is s: when the exchange is full, additional calls are lost. The maximum
queue size or buffer size is s and we get the following modified Markov chain
diagram:

A J-L A 2J-L A
• I( • I( •

012 s-l s

We can find the invariant distribution of this finite Markov chain by solving
the detailed balance equations, as in the last example. This time we get a
truncated Poisson distribution

By the ergodic theorem, the long-run proportion of time that the exchange
is full, and hence the long-run proportion of calls that are lost, is given by

This is known as Erlang's formula. Compare this example with the bus
maintenance problem in Exercise 3.7.1.

Example 5.2.4 (Queues in series)

Suppose that customers have two service requirements: they arrive as a
Poisson process of rate A to be seen first by server A, and then by server
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B. For simplicity we shall assume that the service times are independent
exponentials of parameters Q and j3 respectively. What is the average queue
length at B?

Let us denote the queue length at A by (Xt)t>o and that by B by (¥t)t>o.
- -

Then (Xt)(~O is simply an MIMll queue. If A > Q, then (Xt)(~O is transient
so there is eventually always a queue at A and departures form a Poisson
process of rate a. If A < a, then, by the reversibility argument of Example
5.2.2, the process of departures from A is Poisson of rate A, provided queue
A is in equilibrium. The question about queue length at B is not precisely
formulated: it does not specify that the queues should be in equilibrium;
indeed if A ~ Q there is no equilibrium. Nevertheless, we hope you will agree
to treat arrivals at B as a Poisson process of rate Q /\ A. Then, by Example
5.2.1, the average queue length at B when Q /\ A < j3, in equilibrium, is
given by (Q /\ A)1((3 - (Q /\ A)). If, on the other hand, Q/\ A > (3, then
(¥t)t~O is transient so the queue at B grows without limit.

There is an equilibrium for both queues if A < Q and A < j3. The
fact that in equilibrium the output from A is Poisson greatly simplifies the
analysis of the two queues in series. For example, the average time taken
by one customer to obtain both services is given by

1/(a - A) + 1/(j3 - A).

Example 5.2.5 (Closed migration process)

Consider, first, a single particle in a finite state-space I which performs
a Markov chain with irreducible Q-matrix Q. We know there is a unique
invariant distribution Jr. We may think of the holding times of this chain
as service times, by a single server at each node i E I.

Let us suppose now that there are N particles in the state-space, which
move as before except that they must queue for service at every node. If
we do not care to distinguish between the particles, we can regard this as
a new process (Xt)t~O with state-space Y= N1 , where X t = (ni : i E I) if
at time t there are ni particles at state i. !n fact, this new process is ~lso ~

Markov chain. To describe its Q-matrix Q we define a function bi : I --+ I
by

Thus bi adds a particle at i. Then for i -=I j the non-zero transition rates
are given by

n E I, i,j E I.
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Observe that we can write the invariant measure equation 1rQ = 0 in the
form

1ri L qij = L 1rjqji·
j#i j#i

For n = (ni : i E I) we set

1f(n) = II 1rfi.

iEI

Then

(5.1)

1f(8i n) L q(8i n, 8j n) = II 1r~k
j#i kEI

(1riLqji)
j#i

(L:: 1rjqji)
j#i

= L 1f(8j n)q(8j n, 8m).
j#i

Given mEl we can put m = 8i n in the last identity whenever mi ~ 1. On
summing the resulting equations we obtain

1f(m) L q(m, n) = L 1f(n)q(n, m)
n#m n#m

so 7r is an invariant measure for Q. The total number of particles is con­
served so Qhas communicating classes

and the unique invariant distribution for the N-particle system is given by
normalizing 7f restricted to eN.

Example 5.2.6 (Open migration process)

We consider a modification of the last example where new customers, or
particles, arrive at each node i E I at rate Ai. We suppose also that
customers receiving service at node i leave the network at rate /-li. Thus
customers enter the network, move from queue to queue according to a
Markov chain and eventually leave, rather like a shopping centre. This
model includes the closed system of the last example and also the queues
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in series of Example 5.2.4. Let Xt = (X; : i E I), where X; denotes the
number of customers at node i at time t. Then (Xt)t>o is a Markov chain
in Y= N I and the non-zero transition rates are given by

q(n, bin) = Ai, q(bin , bjn) = qij, q(bjn, n) = /-lj

for n E I and distinct states i, LEI. We shall ass':,me that Ai > 0 for some
i and /-lj > 0 for some j; then Q is irreducible on I.

The system of equations (5.1) for an invariant measure is replaced here
by

1ri (f.1,i + L qij ) = Ai + L 1rjqji·
j#i j#i

This system has a unique solution, with 1ri > 0 for all i. This may be seen
by considering the invariant distribution for the extended Q-matrix Q on
I U {8} with off-diagonal entries

q8j = Aj, qij = qij, qi8 = /-li·

On summing the system over i E I we find

L 1rif.1,i = L Ai.
iEI iEI

As in the last example, for n = (ni : i E I) we set

1f(n) = II 1r~i.
iEI

Transitions from m E I may be divided into those where a new particle is
added and, for each i E I with mi 2:: 1, those where a particle is moved
from i to somewhere else. We have, for the first sort of transition

1f(m) Lq(m,8j m) = 1f(m) LAj
JEI JEI

= 1f(m) L 1rjf.1,j = L 1f(8j m)q(8j m, m)
JEI JEI

and for the second sort

1f(8in) (q(8in, n) + L q(8in, 8j n))
j#i

= II 1r~k (1ri (f.1,i + L qij))
kEI j#i

= II 1r~k ( Ai + L 1rjqj i)
kEI j#i

= 1f(n)q(n, 8in) + L 1f(8j n)q(8j n, 8in).
j#i
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On summing these equations we obtain

1f(m) L: q(m, n) = L: 1f(n)q(n, m)
n#m n#m
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so 7r is an invariant measure for Q. If 1ri < 1 for all i then 7r has finite total
mass niEI(l-1ri), otherwise the total mass if infinite. Hence, Qis positive
recurrent if and only if 1ri < 1 for all i, and in that case, in equilibrium, the
individual queue lengths (Xi: i E I) are independent geometric random
variables with

Example 5.2.7 (M/G/! queue)

As we argued in Section 2.4, the Poisson process is the natural probabilistic
model for any uncoordinated stream of discrete events. So we are often justi­
fied in assuming that arrivals to a queue form a Poisson process. In the pre­
ceding examples we also assumed an exponential service-time distribution.
This is desirable because it makes the queue size into a continuous-time
Markov chain, but it is obviously inappropriate in many real-world exam­
ples. The service requirements of customers and the duration of telephone
calls have observable distributions which are generally not exponential. A
better model in this case is the MIGll queue, where G indicates that the
service-time distribution is general.

We can characterize the distribution of a service time T by its distribu­
tion function

F(t) = JP>(T ~ t),

or by its Laplace transform

(The integral written here is the Lebesgue-Stieltjes integral: when T has
a density function f(t) we can replace dF(t) by f(t)dt.) Then the mean
service time J-l is given by

J-l = E(T) = -£'(0+).

To analyse the MIGll queue, we consider the queue size X n immediately
following the nth departure. Then

(5.2)



188 5. Applications

where Yn denotes the number of arrivals during the nth service time. The
case where X n = 0 is different because then we get an extra arrival before
the (n + 1)th service time begins. By the Markov property of the Poisson
process, Y1 , Y2 , • •• are independent and identically distributed, so (Xn)n~O

is a discrete-time Markov chain. Indeed, except for visits to 0, (Xn)n~O

behaves as a random walk with jumps Yn - 1.

Let Tn denote the nth service time. Then, conditional on Tn = t, Yn is
Poisson of parameter At. So

and, indeed, we can compute the probability generating function

A(z) = E(zYn
) = 100

E(zYn ITn = t)dF(t)

= 100

e-At(l-Z)dF(t) = £('\(1 - z)).

Set p = E(Yn ) = AJ-l. We call p the service intensity. Let us suppose
that p < 1. We have

X n = Xo + (Y1 + · · · + Yn) - n + Zn

where Zn denotes the number of visits of X n to 0 before time n. So

E(Xn) = E(Xo) - n(l - p) + E(Zn).

Take Xo = 0, then, since X n ~ 0, we have for all n

o< 1 - p ~ E(Znln).

By the ergodic theorem we know that, as n --+ 00

E(Znln) --+ limo

where mo is the mean return time to o. Hence

mo ~ 1/(1 - p) < 00

showing that (Xn)n~O is positive recurrent.

Suppose now that we start (Xn)n~O with its equilibrium distribution Jr.

Set
00

G(z) = E(zXn ) = I: 1riZi

i==O
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then

00

= lE(ZYn+l) (1rOZ+ L 1ri Zi
)

i==l

= A(z) (1t"OZ + G(z) -1t"o)

so
(A(z) - z)G(z) = 1t"oA(z)(l - z).

By I'Hopital's rule, as z i 1

(A(z) - z)/(l- z) --+ 1- A'(l-) = 1- p.
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(5.3)

Since G(l) = 1 = A(l), we must therefore have 1t"o = 1 - p, rno = 1/(1 - p)
and

G(z) = (1 - p)(l - z)A(z)/(A(z) - z).

Since A is given explicitly in terms of the service-time distribution, we
can now obtain, in principle, the full equilibrium distribution. The fact
that generating functions work well here is due to the additive structure of
(5.2).

To obtain the mean queue length we differentiate (5.3)

(A(z) - z)G'(z) = (A'(z) - l)G(z) = (1 - p){A'(z)(l - z) - A(z)},

then substitute for G(z) to obtain

G' (z) = (l-p)A'(z) (1- z) -(l-p)A(z) { (A' (z) -1) (1- z) + A(z) - z} .
(A(z) - z) (A(z) _ Z)2

By l'Hopital's rule:

lim (A'(z)-l)(l-z) + A(z)-z -lim A"(z)(l-z) _ _-_A_"_(l_-_)
zjl (A(Z)-Z)2 - zjl 2(A'(z)-1) (A(z)-z) - 2(1-p)2 ·

Hence

E(Xn ) = G'(l-) = p + A"(l-)/2(1 - p)

= p + A2£"(0+)/2(1 - p) = p + A2E(T2)/2(1 - p).

In the case of the M/M/1 queue p = AIJ-l, E(T2) = 2/J-l2 and E(Xn ) =

p/(l - p) = A/(J-l - A), as we found in Example 5.2.1.



190 5. Applications

We shall use generating functions to study two more quantities of interest
- the queueing time of a typical customer and the busy periods of the server.

Consider the queue (Xn)nEZ in equilibrium. Suppose that the customer
who leaves at time 0 has spent time Q queueing to be served, and time T
being served. Then, conditional on Q + T = t, X o is Poisson of parameter
>..t, since the customers in the queue at time 0 are precisely those who
arrived during the queueing and service times of the departing customer.
Hence

G(z) = E(e- A(Q+T)(l-Z)) = M(A(l- z))L(A(l- z))

where M is the Laplace transform

On substituting for G(z) we obtain the formula

M(w) = (1 - p)w/(w - .x(1 - L(w))).

Differentiation and l'Hopital's rule, as above, lead to a formula for the mean
queueing time

E(Q) = -M'(O+) = .xL"(0+)
2 (1 + AL' (0+)) 2

We now turn to the busy period 8. Consider the Laplace transform

Let T denote the service time of the first customer in the busy period. Then
conditional on T = t, we have

8=t+81 + ... +8N,

where N is the number of customers arriving while the first customer is
served, which is Poisson of parameter At, and where 8 1 ,82 , ... are inde­
pendent, with the same distribution as 8. Hence

B(w) = 100

E(e-WS IT = t)dF(t)

= 100

e-wte->.t(l-B(w»dF(t) = L(w + .x(1- B(w))).
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Although this is an implicit relation for B(w), we can obtain moments by
differentiation:

E(S) = -B'(O+) = -£'(0+)(1 - AB'(O+)) = Jl(l + AE(S))

so the mean length of the busy period is given by

E(S) = Jl/(l - p).

Example 5.2.8 (M/G/oo queue)

Arrivals at this queue form a Poisson process, of rate A, say. Service times
are independent, with a common distribution function F(t) = lP(T ~ t).
There are infinitely many servers, so all customers in fact receive service
at once. The analysis here is simpler than in the last example because
customers do not interact. Suppose there are no customers at time O.
What, then, is the distribution of the number X t being served at time t?

The number Nt of arrivals by time t is a Poisson random variable of
parameter At. We condition on Nt = n and label the times of the n arrivals
randomly by AI, ... ,An. Then, by Theorem 2.4.6, AI, ... ,An are inde­
pendent and uniformly distributed on the interval [0, t]. For each of these
customers, service is incomplete at time t with probability

1 it 1 itp=- JP>(T>s)ds=- (l-F(s))ds.
tot 0

Hence, conditional on Nt = n, X t is binomial of parameters nand p. Then

00

P(Xt = k) = L P(Xt = k INt = n)P(Nt = n)
n==O

00

= e->.t(>.pt)k /k! L('\(1 - p)tt-
k
/(n - k)!

n==k

= e-APt(Apt)k /k!

So we have shown that X t is Poisson of parameter

,\ it (1 - F(s))ds.
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Recall that
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Hence if E(T) < 00, the queue size has a limiting distribution, which is
Poisson of parameter ,xE(T).

For further reading see Reversibility and Stochastic Networks by F. P.
Kelly (Wiley, Chichester, 1978).

5.3 Markov chains in resource management

Management decisions are always subject to risk because of the uncertainty
of future events. If one can quantify that risk, perhaps on the basis of past
experience, then the determination of the best action will rest on the cal­

culation of probabilities, often involving a Markov chain. Here we present
some examples involving the management of a resource: either the stock
in a warehouse, or the water in a reservoir, or the reserves of an insurance
company. See also Exercise 3.7.1 on the maintenance of unreliable equip­
ment. The statistical problem of estimating transition rates for Markov
chains has already been discussed in Section 1.10.

Example 5.3.1 (Restocking a warehouse)

A warehouse has a capacity of c units of stock. In each time period n, there
is a demand for Dn units of stock, which is met if possible. We denote
the residual stock at the end of period n by X n . The warehouse manager
restocks to capacity for the beginning of period n + 1 whenever X n ~ m,
for some threshold m. Thus (Xn)n~O satisfies

if X n ~ m

ifm < X n ~ c.

Let us assume that D 1 , D2 , ••• are independent and identically distributed;
then (Xn)n~O is a Markov chain, and, excepting some peculiar demand
structures, is irreducible on {O, 1, ... ,c}. Hence (Xn)n~O has a unique
invariant distribution 7r which determines the long-run proportion of time
in each state. Given that X n = i, the expected unmet demand in period
n + 1 is given by

if i ~ m

if m < i :s; c.
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Hence the long-run proportion of demand that is unmet is

c

u(m) = L 7l"iU i·
i==O

The long-run frequency of restocking is given by

m

r(m) = L7l"i.
i==O
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Now as m increases, u(m) decreases and r(m) increases. The warehouse
manager may want to compute these quantities in order to optimize the
long-run cost

ar(m) + bu(m)

where a is the cost of restocking and b is the profit per unit.

There is no general formula for 1r, but once the distribution of the demand
is known, it is a relatively simple matter to write down the (c + 1) x (c + 1)
transition matrix P for (Xn)n~O and solve 1rP = 1r subject to E~==o 1ri = 1.
We shall discuss in detail a special case where the calculations work out
nicely.

Suppose that the capacity c = 3, so possible threshold values are m =

0,1,2. Suppose that the profit per unit b = 1, and that the demand satisfies

P(D ~ i) = 2- i for i = 0,1,2, ....

Then

00 00

lE((D - i)+) = LIP((D - i)+ 2: k) = LIP(D 2: i + k) = 2-i
.

k=l k=l

The transition matrices for m = 0,1,2 are given, respectively, by

(

1/8 1/8 1/4 1/2) (1/8 1/8 1/4 1/2) (1/8 1/8 1/4 1/2)
1/2 1/2 0 0 1/8 1/8 1/4 1/2 1/8 1/8 1/4 1/2
1/4 1/4 1/2 0 1/4 1/4 1/2 0 1/8 1/8 1/4 1/2
1/8 1/8 1/4 1/2 1/8 1/8 1/4 1/2 1/8 1/8 1/4 1/2

with invariant distributions

(1/4,1/4,1/4,1/4), (1/6,1/6,1/3,1/3), (1/8,1/8,1/4,1/2).

Hence

u(O) = 1/4, u(l) = 1/6, u(2) = 1/8
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r(O) = 1/4, r(l) = 1/3, r(2) = 1/2.

Therefore, to minimize the long-run cost ar(m) + u(m) we should take

{

2 if a ~ 1/4

m = 1 if 1/4 < a ~ 1

o if 1 < a.

Example 5.3.2 (Reservoir model - discrete time)

We are concerned here with a storage facility, for example a reservoir, of
finite capacity c. In each time period n, An units of resource are available
to enter the facility and B n units are drawn off. When the reservoir is
full, surplus water is lost. When the reservoir is empty, no water can be
supplied. We assume that newly available resources cannot be used in the
current time period. Then the quantity of water X n in the reservoir at the
end of period n satisfies

X n+1 = ((Xn -Bn+I)+ + An+l ) Ac.

If we assume that An, Bn and c are integer-valued and that AI, A2 , ••• are
independent and identically distributed, likewise B I, B2 , ••• , then (Xn)n~O

is a Markov chain on {O, 1, ... ,c}, whose transition probabilities may be
deduced from the distributions of An and B n. Hence we know that the long­
run behaviour of (Xn)n~O is controlled by its unique invariant distribution
7r, assuming irreducibility. For example, the long-run proportion of time
that the reservoir is empty is simply 7ro. So we would like to calculate 7r.

A simplifying assumption which makes some calculations possible is to
assume that consumption in each period is constant, and that our units are
chosen to make this constant 1. Then the infinite capacity model satisfies
a recursion similar to the M/G/l queue:

X n+1 = (Xn - 1)+ + An+l .

Hence, by the argument used in Example 5.2.7, if E(An) < 1, then (Xn)n~O

is positive recurrent and the invariant distribution 7r satisfies

00

L 7riZi = (1 - EAn )(1 - z)A(z)j(A(z) - z)
i=O

where A(z) = E(zAn ). In fact, whether or not E(An ) < 1, the equation

00

L lIiZi = (1 - z)A(z)j(A(z) - z)
i=O
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serves to define a positive invariant measure v for (Xn)n~O. To see this,
multiply by A(z) - z and equate powers of z: the resulting equations are
the equilibrium equations for (Xn)n~O:

Vo = lIo(ao + a1) + V1 aO

i

l/i = l/i+l aO + L l/jai-j+1, for i ~ 1
j=O

where ai = P(An = i).
Note that (Xn)n~O can only enter {O, 1, ... ,c} through c. Hence, by the

strong Markov property, (Xn)n~O observed whilst in {O, 1, ... ,c} is simply
the finite-capacity model. In the case where IE(An) < 1, we can deduce for
the finite-capacity model that the long-run proportion of time in state i is
given by vi/(vo +... +ve ). In fact, this is true in general as the equilibrium
equations for the finite-capacity model coincide with those for v up to level
c - 1, and the level c equation is redundant.

In reality, it is to be hoped that, in the long run, supply will exceed
demand, which is true if E(An) > 1. Then (Xn)n~O is transient, so II must
have infinite total mass. The problem faced by the water company is to
keep the long-run proportion of time 1ro(c) that the reservoir is empty below
a certain acceptable fraction, € > °say. Hence c should be chosen large
enough to make

lIO/(lIo + ... + lie) < c

which is always possible in the transient case.

Example 5.3.3 (Reservoir model - continuous time)

Consider a reservoir model where fresh water arrives at the times of
a Poisson process of rate A. The quantities of water 8 1 ,82 , ... arriving
each time are assumed independent and identically distributed. We assume
that there is a continuous demand for water of rate 1. For a reservoir of
infinite capacity, the quantity of water held (Wt)t~O is just the stored
work in an M/G/I queue with the same arrival times and service times
8 1 ,82 ,. ... The periods when the reservoir is empty correspond to idle
periods of the queue. Hence in the positive recurrent case where AE(8n ) <
1, the long-run proportion of time that the reservoir is empty is given by
IE(Sn)/(l - ,xIE(Sn)). Note that (Wt)t~O can enter [0, c] only through c.
As in the preceding example we can obtain the finite capacity model by
observing (Wt)t~O whilst in [0, c], but we shall not pursue this here.

The next example is included, in part, because it illustrates a surprising
and powerful connection between reflected random walks and the maxima
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of random walks, which we now explain. Let Xl, X 2 , • •• denote a sequence
of independent, identically distributed random variables. Set Sn = Xl +
... + X n and define (Zn)n~O by Zo = 0 and

Zn+l = (Zn + X n+l )+.

Then, by induction, we have

so Zn has the same distribution as M n where

Example 5.3.4 (Ruin of an insurance company)

An insurance company receives premiums continuously at a constant rate.
We choose units making this rate 1. The company pays claims at the times
of a Poisson process of rate -X, the claims YI, Y2 , ••• being independent and
identically distributed. Set p = -XE(Yi) and assume that p < 1. Then in
the long run the company can expect to make a profit of 1 - P per unit
time. However, there is a danger that large claims early on will ruin the
company even though the long-term trend is good.

Denote by Sn the cumulative net loss following the nth claim. Thus
Sn = Xl + .. · + X n , where X n = Yn - Tn and Tn is the nth inter-arrival
time. By the strong law of large numbers

as n ~ 00. The maximum loss that the company will have to sustain is

M= lim M n
n--+oo

where

By the argument given above, M n has the same distribution as Zn, where

Zo = 0 and
Zn+l = (Zn + Yn - Tn )+.

But Zn is the queueing time of the nth customer in the M/G/1 queue with
inter-arrival times Tn and service times Yn. We know by Example 5.2.7 that
the queue-length distribution converges to equilibrium. Hence, so does the
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queueing-time distribution. Also by Example 5.2.7, we know the Laplace
transform of the equilibrium queueing-time distribution. Hence

The probability of eventual bankruptcy is P(M > a), where a denotes the
initial value of the company's assets. In principle, this may now be obtained
by inverting the Laplace transform.

5.4 Markov decision processes

In many contexts costs are incurred at a rate determined by some process
which may best be modelled as a Markov chain. We have seen in Section
1.10 and Section 4.2 how to calculate in these circumstances the long-run
average cost or the expected total cost. Suppose now that we are able to
choose the transition probabilities for each state from a given class and that
our choice determines the cost incurred. The question arises as to how best
to do this to minimize our expected costs.

Example 5.4.1

A random walker on {O, 1, 2, ... } jumps one step to the right with proba­
bility p and one step to the left with probability q = 1 - p. Any value of
p E (0,1] may be chosen, but incurs a cost

c(p) = l/p.

The walker on reaching 0 stays there, incurring no further costs.

If we are only concerned with minimizing costs over the first few time
steps, then the choice p = 1 may be best. However, in the long run the only
way to avoid an infinite total cost is to get to O. Starting from i we must
first hit i-I, then i - 2, and so on. Given the lack of memory in the model,
this makes it reasonable to pick the same value of p throughout, and seek
to minimize ¢(p), the expected total cost starting from 1. The expected
total cost starting from 2 is 2¢(p) since we must first hit 1. Hence

¢(p) = c(p) + 2p¢(p)

so that
¢(p) = { c(p)/(l - 2p) for p < 1/2

00 for p ~ 1/2.

Thus for c(p) = lip the choice p = 1/4 is optimal, with expected cost 8.
The general discussion which follows will make rigorous what we claimed

was reasonable.
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Generally, let us suppose given some distribution A = (Ai: i E I) and,
for each action a E A, a transition matrix P(a) = (Pij(a) : i,j E I) and
a cost function c(a) = (Ci (a) : i E I). These are the data for a Markov
decision process, though so far we have no process and when we do it will
not in general be Markov. To get a process we must choose a policy, that
is, a way of determining actions by our current knowledge of the process.
Formally, a policy U is a sequence of functions

n=O,1,2, ....

Each policy u determines a probability law pu for a process (Xn)n~O with
values in I by

(i) PU(Xo = io) = Aio ;

(ii) PU(Xn+1 =in+11 X o =io, ... ,Xn =in) =Pin in +l(un(io, ... ,in)).
A stationary policy u is a function u : I ~ A. We abuse notation and write
u also for the associated policy given by

Under a stationary policy u, the probability law pu makes (Xn)n>O Markov,
with transition probabilities P"tj = Pij (u(i)) · -

We suppose that a cost c(i, a) = ci(a) is incurred when action a is chosen
in state i. Then we associate to a policy u an expected total cost starting
from i, given by

00

VU(i) = EU LC(Xn,Un(Xo, ... ,Xn)).
n=O

So that this sum is well defined, we assume that c(i, a) ~ 0 for all i and a.
Define also the value function

V*(i) = infVU(i)
U

which is the minimal expected total cost starting from i.

The basic problem of Markov decision theory is how to minimize expected
costs by our choice of policy. The minimum expected cost incurred before
time n = 1 is given by

VI (i) = inf c(i, a).
a

Then the minimum expected cost incurred before time n = 2 is

V2 (i) = i~{c(i, a) + LPij(a)V1(j)}.
jE!
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Define inductively

Vn+l (i) = i~f{c(i, a) + LPij(a)VnU)}.
jEI

199

(5.4)

It is easy to see by induction that Vn (i) ~ Vn +l (i) for all i, so Vn (i) increases
to a limit Voo(i), possibly infinite. We have

Vn+l(i) :::; c(i,a) + LPij(a)VnU)
jEI

so, letting n ~ 00 and then minimizing over a,

for all a

Voo(i) :::; i~{ c(i, a) + LPij(a)VOOU)}.
jEI

(5.5)

It is a reasonable guess that Voo(i), being the limit of minimal expected
costs over finite time intervals, is in fact the value function V*(i). This is
not always true, unless we can show that the inequality (5.5) is actually an
equality. We make three technical assumptions to ensure this. We assume
that

(i) for all i, j the functions Ci : A ~ [0,00) and Pij : A ~ [0,00) are
continuous;

(ii) for all i and all B < 00 the set {a : ci(a) ~ B} is compact;

(iii) for each i, for all but finitely many j, for all a E A we have Pij (a) = 0.

A simple case where (i) and (ii) hold is when A is a finite set. It is easy
to check that the assumptions are valid in Example 5.4.1, with A = (0,1],
ci(a) = l/a and

{

a ifj=i+1

Pij (a) = 01 - a if j = i-I
otherwise,

with obvious exceptions at i = O.

Lemma 5.4.2. There is a stationary policy u such that

Voo(i) = c(i, u(i)) + LPij (u(i))VooU)·
jEI

(5.6)

Proof. If Voo(i) = 00 there is nothing to prove, so let us assume that
Voo(i) ~ B < 00. Then

Vn+l(i) = !~ {C(i,a) + LPij(a)Vn(j)}
jEJ
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where K is the compact set {a : c(i, a) ~ B} and where J is the finite set
{j : Pij ¢. O}. Hence, by continuity, the infimum is attained and

Vn+l(i) = c(i,un(i)) + :EPij(un(i))Vn(j)
jEJ

(5.7)

for some un(i) E K. By compactness there is a convergent subsequence
unk (i) ~ u(i), say, and, on passing to the limit nk ~ 00 in (5.7), we obtain
(5.6). D

Theorem 5.4.3. We have

(i) Vn(i) i V*(i) as n ~ 00 for all i;

(ii) if u * is any stationary policy such that a = u *(i) minimizes

c(i,a) + :EPij (a)V* (j)
jEI

for all i, then u* is optimal, in the sense that

v u * (i) = V*(i)

Proof. For any policy u we have

00

for all i.

VU(i) = Ei L c(Xn,Un (Xo, · " ,Xn))
n=O

= c(i,uo(i)) + :EPij(UO(i))vu[i](j)
jEI

where u[i] is the policy given by

Hence we obtain

VU(i) ~ i~{ c(i, a) + LPij (a)V* (j) }
jEI

and, on taking the infimum over u

V*(i) ~ i~{c(i, a) +LPij (a)V* (j) }.
jEI

(5.8)

Certainly, Vo(i) = 0 ~ V*(i). Let us suppose inductively that Vn(i) ~ V*(i)
for all i. Then by substitution in the right sides of (5.4) and (5.8) we find
Vn+1 (i) ~ V*(i) and the induction proceeds. Hence Voo(i) ~ V*(i) for all i.
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Let u* be any stationary policy for which

Voo(i) ~ c(i,u*(i)) + LPij(U*(i))Voo(j).
jEI
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We know such a policy exists by Lemma 5.4.2. Then by Theorem 4.2.3 we
have vu* (i) ~ Voo(i) for all i. But V*(i) ~ vu* (i) for all i, so

Voo(i) = V*(i) = v u * (i)

and we are done. D

for all i

The theorem just proved shows that the problem of finding a good policy
is much simpler than we might have supposed. For it was not clear at the
outset that there would be a single policy which was optimal for all i, even
less that this policy would be stationary. Moreover, part (i) gives an explicit
way of obtaining the value function V* and, once this is known, part (ii)
identifies an optimal stationary policy.

In practice we may know only an approximation to V*, for example Vn

for n large. We may then hope that, by choosing a = u(i) to minimize

c(i, a) + :EPij(a)Vn(j)
jEI

we get a nearly optimal policy. An alternative means of constructing nearly
optimal policies is sometimes provided by the method of policy improve­
ment. Given one stationary policy u we may define another Ou by the
requirement that a = (Ou)(i) minimizes

c(i,a) + :Epij(a)Vu(j).
jEI

Theorem 5.4.4 (Policy improvement). We have

(i) VeU(i) ~ VU(i) for all i;
(ii) VenU(i) ! V*(i) as n ~ 00 for all i, provided that

for all i. (5.9)

Proof. (i) We have, by Theorem 4.2.3

VU(i) = c(i,u(i)) + LPij(u(i))VU(j)
jEI

~ c(i,Ou(i)) + :EPij(Ou(i))vu(j)
jEI

so VU(i) ~ VeU(i) for all i, by Theorem 4.2.3.
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(ii) We note from part (i) that

VOU(i) :::; c(i,a) + LPii(a)Vu(j)
jEI

for all i and a. (5.10)

Fix N ~ 0 and consider for n = 0, 1, . .. ,N the process

n-l

M n = VON-nU(Xn) + LC(Xk,U*(Xk))'
k=O

Recall the notation for conditional expectation introduced in Section 4.1.
We have

EU* (Mn+1 I :Fn) = LPXni (U*(Xn))VoN-n-lu(j) + c(Xn,u*(Xn))
jEI

n-l

+ LC(Xk,U*(Xk))
k=O

~Mn

where we used (5.10) with u replaced by (IN-n-l u , i = X n and a = u*(Xn ).

It follows that EU· (Mn +1) ~ EU· (Mn ) for all n. Hence if we assume (5.9),
then

V 9NU(i) = IEy· (Mo) ~ IEY· (MN )

=Ef(VU(XN)) +Eu
* (~c(Xn,u*(Xn)))

~V*(i) asN~oo. D

We have been discussing the minimization of expected total cost, which is
only relevant to the transient case. This is because we will have V* (i) = 00

unless for some stationary policy u, the only states j with positive cost
c(j, u(j)) > 0, accessible from i, are transient. The recurrent case is also
of practical importance and one way to deal with this is to discount costs
at future times by a fixed factor Q E (0,1). We now seek to minimize the
expected total discounted cost

00

V:(i) = EiLOnC(Xn,Un(Xo, ... ,Xn)).
n=O

Define the discounted value function

V;(i) = infV:(i).
U
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In fact, the discounted case reduces to the undiscounted case by intro­
ducing a new absorbing state 8 and defining a new Markov decision process
by

Pij (a) = apij (a),

ci(a) = ci(a),

Pia(a) = 1 - a,

ca(a) = O.

Thus the new process follows the old until, at some geometric time of pa­
rameter a, it jumps to 8 and stays there, incurring no further costs.

Introduce VO,a (i) = 0 and, inductively

Vn+l,o:(i) = i~f{c(i, a) + a 2:Pij (a)Vn,o: (in
jEJ

and, given a stationary policy u, define another Oau by the requirement
that a = (Oau)(i) minimizes

c(i, a) + a 2:Pij(a)VU U).
jEJ

Theorem 5.4.5. Suppose that the cost function c(i, a) is uniformly
bounded.

(i) We have Vn,a(i) i VC:(i) as n ~ 00 for all i.

(ii) The value function VC: is the unique bounded solution to

V;(i) = i~f{c(i, a) + a 2:Pij(a)V;U) }.
jEI

(iii) Let u* be a stationary policy such that a = u*(i) minimizes

c(i,a) +a 2:Pij(a)V;U)
jEI

for all i. Then u* is optimal in the sense that

(5.11)

V:* (i) = VC:(i)

(iv) For all stationary policies u we have

for all i.

as n ~ 00 for all i.

Proof. With obvious notation we have
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so parts (i), (ii) and (iii) follow directly from Theorems 5.4.3 and 5.4.4,
except for the uniqueness claim in (ii). But given any bounded solution V
to (5.11), there is a stationary policy u such that

V(i) = c(i,u(i)) +0: :Epij(u(i))V(j).
JEI

Then V = V~, by Theorem 4.2.5. Then (}au = U so (iv) will show that u is
optimal and V = VC:.

We have c(i, a) ~ B for some B < 00. So for any stationary policy u we
have

00

V:(i) = Ei:E o:nc(xn,u(Xn)) :::; B/(l - 0:)
n=O

and so

iEf* (VU(Xn)) = anEf* (V~(Xn)) ~ Ban/(l- a) ~ 0

as n ~ 00. Hence (iv) also follows from Theorem 5.4.4. D

We finish with a discussion of long-run average costs. Here we are con­
cerned with the limiting behaviour, as n ~ 00, of

We assume that

Ic(i, a)1 ~ B < 00 for all i and a.

This forces IV:(i) I ~ B for all n, but in general the sequence ~ (i) may
fail to converge as n ~ 00. In the case of a stationary strategy u for which
(Xn)n>O has a unique invariant distribution 1r

u, we know by the ergodic
theorem that

1 n-l

;;: LC(Xk,U(Xk)) ~ L 7rj cU,u(j))
k=O JEI

as n ~ 00, Pi-almost surely, for all i. So ~ (i) does converge in this
case by bounded convergence, with the same limit. This suggests that one
approach to minimizing long-run costs might be to minimize

L 7rjcU, u(j)).
JEI

But, although this is sometimes valid, we do not know in general that the
optimal policy is positive recurrent, or even stationary. Instead, we use a
martingale approach, which is more general.
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Theorem 5.4.6. Suppose we can find a constant V* and a bounded func­
tion W(i) such that

V* +W(i) = i~f{c(i,a) + LPii(a)W(j)}
jEI

for all i. (5.12)

Let u* be any stationary strategy such that a = u*(i) achieves the infimum
in (5.12) for each i. Then

(i) v::* (i) -t V* as n -t 00 for all i;

(ii) liminfn~oo v:: (i) ~ V* for all i, for all u.

Proof. Fix a strategy u and set Un = un(Xo, ... ,Xn). Consider

n-l

Mn = W(Xn) - nV* + L C(Xk' Uk).
k=O

Then

EU(Mn+l IFn)

= Mn + {C(Xn, Un) + LPXni(Un)W(j)} - (V* +W(Xn))
jEI

with equality if u = u*. Therefore

So we obtain
v* ~ V~(i) + 2 sup IW(i)l/n.

i

This implies (ii) on letting n ~ 00. When u = u* we also have

v::* (i) ~ V* + 2 sup IW(i)l/n
i

and hence (i). D

The most obvious point of this theorem is that it identifies an optimal
stationary policy when the hypothesis is met. Two further aspects also
deserve comment. Firstly, if u is a stationary policy for which (Xn)n~O has
an invariant distribution 1r

u , then

2: 1I"f (V* + W(i)) ~ 2:1I"f (C(i'U(i)) + 2:Pii(U(i))W(j))
iEI iEI jEI

= 2:1I"fc(i,u(i)) + L1I"jW(j)
iEI jEI
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v* ~ L 1rfc(i, u(i))
iEI

with equality if we can take u = u* .

Secondly, there is a connection with the case of discounted costs. Assume
that I is finite and that P(a) is irreducible for all a. Then we can show
that as a i 1 we have

V;(i) = V* /(1 - a) +W(i) + 0(1 - a).

On substituting this into (5.11) we find

v* /(1 - a) + W(i) + 0(1 - a)

= i~f {C(i' a) + a LPij(a)(V* /(1- a) + W(j) + 0(1 - a))}
jEI

so

V* + W(i) = i~f {C(i' a) + a LPij(a)W(j)} + 0(1 - a)
jEI

which brings us back to (5.12) on letting a i 1.

The interested reader is referred to S.11. Ross, Applied Probability Mod­
els with Optimization Applications (Holden-Day, San Francisco, 1970) and
to H. C. Tijms, Stochastic Models - an algorithmic approach (Wiley, Chich­
ester, 1994) for more examples, results and references.

5.5 Markov chain Monte Carlo

Most computers may be instructed to provide a sequence of numbers

Ul = O.Ull U12 U 13 Ulm

U2 = O.U21 U22 U 23 U2m

U3 = 0.U31 U32 U 33 U3m

written as decimal expansions of a certain length, which for many purposes
may be regarded as sample values of a sequence of independent random
variables, uniformly distributed on [0,1]:



5.5 Markov chain Monte Carlo 207

We are cautious in our language because, of course, Ul, U2, U3, ... are actu­
ally all integer multiples of 10-m and, more seriously, they are usually de­
rived sequentially by some entirely deterministic algorithm in the computer.
Nevertheless, the generators of such pseudo-random numbers are in general
as reliable an imitation as one could wish of U1(w), U2 (w), U3 (w), .... This
makes it worth while considering how one might construct Markov chains
from a given sequence of independent uniform random variables, and then
might exploit the observed properties of such processes.

We shall now describe one procedure to simulate a Markov chain (Xn)n~O

with initial distribution A and transition matrix P. Since EiEI Ai = 1 we
can partition [0,1] into disjoint subintervals (Ai: i E I) with lengths

Similarly for each i E I, we can partition [0,1] into disjoint subintervals
(A ij : j E I) such that

Now define functions

Go : [0, 1] ~ I,

G : I x [0, 1] ~ I

by
Go(U) = i

G(i,u)=j

if u E Ai,

if u E Aij .

Suppose that Uo,U1,U2 , • •• is a sequence of independent random variables,
uniformly distributed on [0,1], and set

X o = Go(Uo),

X n+1 = G(Xn, Un+1 ) for n ~ 0.

Then

lP(Xo = i) = lP(Uo E Ai) = Ai,

lP(Xn +1 = i n +1 I Xo = io, ... ,Xn = in) = JP>(Un +1 E Ainin+l) = Pinin+l

so (Xn)n~O is Markov(A, P).

This simple procedure may be used to investigate empirically those as­
pects of the behaviour of a Markov chain where theoretical calculations
become infeasible.
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The remainder of this section is devoted to one application of the simu­
lation of Markov chains. It is the application which finds greatest practical
use, especially in statistics, statistical physics and computer science, known
as Markov chain Monte Carlo. Monte Carlo is another name for computer
simulation so this sounds no different from the procedure just discussed.
But what is really meant is simulation by means of Markov chains, the
object of primary interest being the invariant distribution of the Markov
chain and not the chain itself. After a general discussion we shall give two
examples.

The context for Markov chain Monte Carlo is a state-space in product
form

I = II 8m

mEA

where A is a finite set. For the purposes of this discussion we shall also
assume that each component 8 m is a finite set. A random variable X with
values in I is then a family of component random variables (X (m) : mEA),
where, for each site mEA, X(m) takes values in 8m .

We are given a distribution 7r = (7ri : i E I), perhaps up to an unknown
constant multiple, and it is desired to compute the number

(5.13)

for some given function I = (Ii : i E I). The essential point to understand is
that A is typically a large set, making the state-space I very large indeed.
Then certain operations are computationally infeasible - performing the
sum (5.13) state by state for a start.

An alternative approach would be to simulate a large number of inde­
pendent random variables Xl, ... ,Xn in I, each with distribution 7r, and
to approximate (5.13) by

1 n

;;, L!(Xk).
k=l

The strong law of large numbers guarantees that this is a good approxi­
mation as n ~ 00 and, moreover, one can obtain error estimates which
indicate how large to make n in practice. However, simulation from the
distribution 7r is also difficult, unless 7r has product form

1r(X) = II 1rm {x(m)).
mEA

For recall that a computer just simulates sequences of independent U[O, 1]
random variables. When 7r does not have product form, Markov chain
Monte Carlo is sometimes the only way to simulate samples from 7r.
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The basic idea is to simulate a Markov chain (Xn)n~O, which is con­
structed to have invariant distribution Jr. Then, assuming aperiodicity and
irreducibility, we know, by Theorem 1.8.3, that as n ~ 00 the distribution
of X n converges to Jr. Indeed, assuming only irreducibility, Theorem 1.10.2
shows that

with probability 1. But why should simulating an entire Markov chain be
easier than simulating a simple distribution Jr? The answer lies in the fact
that the state-space is a product.

Each component Xo(m) of the initial state Xo is a random variable in 8m .

It does not matter crucially what distribution Xo is given, but we might,
for example, make all components independent. The process (Xn)n~O is
made to evolve by changing components one site at a time. When the
chosen site is m, we simulate a new random variable X n +1(m) with values
in 8m according to a distribution determined by X n , and for k =I m we set
X n+1 ( k) = X n ( k) . Thus at each step we have only to simulate a random
variable in 8m , not one in the much larger space I.

Let us write i ~ j if i and j agree, except possibly at site m. The law for
simulating a new value at site m is described by a transition matrix P(m),
where

pij(m) = 0 unless i ~ j.

We would like Jr to be invariant for P(m). A sufficient condition is that the
detailed balance equations hold: thus for all i, j we want

There are many possible choices for P(m) satisfying these equations. In­
deed, given any stochastic matrix R(m) with

rij(m) = 0 unless i ~ j

we can determine such a P(m) by

for i =I j, and then

pii(m) = 1- 2:Pij(m) ~ O.
j#i
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This has the following interpretation: if X n = i we simulate a new random
variable Yn so that Yn = j with probability rij(m), then if Yn = j we set

with probability (7ririj(m)/7rjrji(m)) 1\ 1

otherwise.

This is called a Hastings algorithm.

There are two commonly used special cases. On taking

for i ~ j

we also find

for i ~ j.

So we simply resample X n (m) according to the conditional distribution
under 7r, given the other components. This is called the Gibbs sampler. It
is particularly useful in Bayesian statistics.

On taking rij(m) = rji(m) for all i and j we find

for i ~ j, i =1= j.

This is called a Metropolis algorithm. A particularly simple case would be
to take

rij(m) == l/(Nm - 1) for i ~ j, i =1= j

where N m == ISml. This amounts to choosing another value jm at site m
uniformly at random; if 7rj > 7ri, then we adopt the new value, whereas if
7rj ~ 7ri we adopt the new value with probability 7rj/7ri.

We have not yet specified a rule for deciding which site to visit when.
In practice this may not matter much, provided we keep returning to every
site. For definiteness we mention two possibilities. We might choose to visit
every site once and then repeat, generating a sequence of sites (mn)n~O.

Then (mn,Xn)n~O is a Markov chain in A x I. Alternatively, we might
choose a site randomly at each step. Then (Xn)n~O is itself a Markov chain
with transition matrix

P = IAI-1 :E P(m).
mEA

We shall stick with this second choice, where the analysis is simpler to
present. Let us assume that P is irreducible, which is easy to ensure in the
examples. We know that
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for all m and all i, j, so also

211

7riPij = 7rjPji

and so 7r is the unique invariant measure for P. Hence, by Theorem 1.10.2,
we have

1 n-1

- L f(Xk) -t L 7rdi

n k=O iEI

as n ~ 00 with probability 1. Thus the algorithm works eventually. In
practice one is concerned with how fast it works, but useful information
of this type cannot be gained in the present general context. Given more
information on the structure of 8 m and the distribution 7r to be simulated,
much more can be said. We shall not pursue the matter here. It should
also be emphasised that there is an empirical side to simulation: with due
caution informed by the theory, the computer output gives a good idea
of how well we are doing. For further reading we recommend Stochastic
Simulation by B. D. Ripley (Wiley, Chichester, 1987), and Markov Chain
Monte Carlo in practice by W. R. Gilks, S. Richardson and D. J. Spiegelhal­
ter (Chapman and Hall, London, 1996). The recent survey article Bayesian
computation and stochastic systems by J. Besag, P. Green, D. Higdon and
K. Mengersen (Statistical Science, 10 (1), pp. 3-40, 1995) contains many
interesting references. We finish with two examples.

Example 5.5.1 (Bayesian statistics)

In a statistical problem one may be presented with a set of independent
observations Y1 , . .. ,Yn , which it is reasonable to assume are normally dis­
tributed, but with unknown mean /-l and variance 7-1 . One then seeks
to draw conclusions about /-l and 7 on the basis of the observations. The
Bayesian approach to this problem is to assume that /-l and 7 are themselves
random variables, with a given prior distribution. For example, we might
assume that

/-l rv N(00, cPo 1
), 7 rv r(0:0, ,80),

that is to say, /-l is normal of mean 00 and variance cPo 1
, and 7 has gamma

distribution of parameters 0:0 and ,80. The parameters 00 , cPo, 0:0 and ,80
are known. Then the prior density for (/-l, 7) is given by

7r(/-l, 7) ex exp{ -cPO(/-l- Oo)2/2}7ao -
1exp{-,807}.

The posterior density for (/-l, 7), which is the conditional density given
the observations, is then given by Bayes' formula

7r(/-l, 7 I y) ex 7r(/-l, 7) f (y I /-l, 7)

ex exp{-¢o(p- ( 0)2 /2} exp { -T t.(Yi -p)2 /2} Tao-l+n
/
2 exp{ -{jOT}.
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Note that the posterior density is no longer in product form: the condition­
ing has introduced a dependence between J-l and T. Nevertheless, the full
conditional distributions still have a simple form

1r(pl Y, r) ex exp{-¢o(p- ( 0)2/2} exp { -r t.(Yi - p)2 /2 } I'.J N(On, ¢;;1),

1r(r IY, p) ex r CYo
-l+

n
/
2exp { -r (,80 + t,(Yi - p)2/2) }I'.J r(an, ,8n)

where

n

an = ao + n/2, ,8n = ,80 + 2)Yi - p)2/2.
i==l

Our final belief about J-l and T is regarded as measured by the posterior
density. We may wish to compute probabilities and expectations. Here the
Gibbs sampler provides a particularly simple approach. Of course, numeri­
cal integration would also be feasible as the dimension is only two. To make
the connection with our general discussion we set

1=81 X 82 = JR x [0,00).

We wish to simulate X = (J-l, T) with density 7r(J-l, T I y). The fact that JR
and [0, 00) are not finite sets does not affect the basic idea. In any case the
computer will work with finite approximations to JR and [0,00). First we
simulate X o, say from the product form density 7r(J-l, T). At the kth stage,
given X k = (J-lk, Tk), we first simulate J-lk+1 from 7r(J-l I y, Tk) and then Tk+1
from 7r(T I y,J-lk+1), then set Xk+1 = (J-lk+1,Tk+1). Then (Xk)k~O is a
Markov chain in I with invariant measure 7r(J-l, T I y), and one can show
that

k-1

~ ~ f(X j ) -t1f(x)1r(x Iy)dx as k -t 00

with probability 1, for all bounded continuous functions f : I ---+ JR. This
is not an immediate consequence of the ergodic theorem for discrete state­
space, but you may find it reasonable at an intuitive level, with a rate of
convergence depending on the smoothness of 7r and f.

We now turn to an elaboration of this example where the Gibbs sampler
is indispensible. The model consists of m copies of the preceding one, with
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different means but a common variance. Thus there are mn independent
observations }!ij, where i = 1, ... n, and j = 1, ... ,m, normally distributed,
with means jjj and common variance 7-1 . We take these parameters to be
independent random variables as before, with

Let us write jj = (jj1, . .. ,jjn). The prior density is given by

and the posterior density is given by

1r(J-l, T I y) ex exp { -¢o ~(J-lj - ( 0 )2 /2}

x exp { -Tt. ~(Yij - J-lj)2 /2} TQo-Hmn/2 exp{-,8oT}.

Hence the full conditional distributions are

where

n m

On = 00 + mn/2, ,8n = f30 + L L(Yij - J-lj)2/2.
i=1 j=1

We can construct approximate samples from 7r(jj, 7 I y), just as in the case
m = 1 discussed above, by a Gibbs sampler method. Note that, conditional
on 7, the means jjj, for j = 1, ... ,m, remain independent. Thus one can
update all the means simultaneously in the Gibbs sampler. This has the.
effect of speeding convergence to the equilibrium distribution. In cases
where m is large, numerical integration of 7r(jj,7 I y) is infeasible, as is
direct simulation from the distribution, so the Markov chain approach is
the only one available.
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Example 5.5.2 (Ising model and image analysis)

Consider a large box A = AN in 712

A = {-N, ... ,-1,0,1, ... ,N}2

with boundary 8A = AN\AN- 1 , and the configuration space

For x E A define
H(x) = ! I:: (x(m) - x(m,))2

where the sum is taken over all pairs {m, m/} ~ A with 1m - m'l = 1. Note
that H(x) is small when the values taken by x at neighbouring sites are
predominantly the same. We write

I+ = {x E I : x(m) = 1 for all m E 8A}

and for each (3 > °define a probability distribution (rr(x) : x E I+) by

1t"(x) ex e-(3H(x).

As (3 ! °the weighting becomes uniform, whereas, as (3 i 00 the mass
concentrates on configurations x where H(x) is small. This is one of the
fundamental models of statistical physics, called the Ising model. A famous
and deep result of Onsager says that if X has distribution 1t", then

In particular, if sinh 2(3 ~ 1, the fact that X is forced to take boundary
values 1 does not significantly affect the distribution of X(O) when N is
large, whereas if sinh 2{3 > 1 there is a residual effect of the boundary
values on X(O), uniformly in N.

Here we consider the problem of simulating the Ising model. Simulations
may sometimes be used to guide further developments in the theory, or even
to detect phenomena quite out of reach of the current theory. In fact, the
Ising model is rather well understood theoretically; but there are many
related models which are not, where simulation is still possible by simple
modifications of the methods presented here.

First we describe a Gibbs sampler. Consider the sets of even and odd
sites

A+ = {(ml' m2) E A : ml + m2 is even},

A- = {(ml' m2) E A : ml + m2 is odd}
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x± = (x(m) : m E A±).

We can exploit the fact that the conditional distribution 1r(x+ I x-) has
product form

1r(X+ Ix-) ex II e/3x(m)s(m)

mEA+\8A

where, for mEA+\8A

s(m) = L x-(m').
Im'-ml=l

Therefore, it is easy to simulate from 1r(x+ I x-) and likewise from
1r(x- I x+). Choose now some simple initial configuration Xo in 1+. Then
inductively, given X;; = x-, simulate firstly X~+l with distribution
1r(. I x-) and then given X~+l = x+, simulate X;+l with distribution
1r(. I x+). Then according to our general discussion, for large n, the distri-
bution of X n is approximately 1r. Note that we did not use the value of the
normalizing constant

Z = L e-/3H(x)

xEI+

wllich is hard to compute by elementary means when N is large.

An alternative approach is to use a Metropolis algorithm. We can again
exploit the even/odd partition. Given that X n = x, independently for each
m E A+\8A, we change the sign of Xt(m) with probability

p(m,x) = (1r(x)/1r(x)) 1\ 1 = e2,Bx(m)s(m) 1\ 1

where x ~ x with x(m) = -x(m). Let us call the resulting configuration
Yn . Next we apply the corresponding transformation to Yn- ( m) for the odd
sites m E A-\8A, to obtain X n+1 . The process (Xn)n~O is then a Markov
chain in 1+ with invariant distribution 1r.

Both methods we have described serve to simulate samples from 1r; there
is little to choose between them. Convergence is fast in the subcritical case
sinh 2,8 < 1, where 1r has an approximate product structure on large scales.

In a Bayesian analysis of two-dimensional images, the Ising model is
sometimes used as a prior. We may encode a digitized image on a two­
dimensional grid as a particular configuration (x(m) : mEA) E I, where
x(m) = 1 for a white pixel and x(m) = -1 for a black pixel. By varying
the parameter ,8 in the Ising model, we vary the tendency of black pixels
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to clump together; the same for white pixels. Thus (3 is a sort of texture
parameter, which we choose according to the sort of image we expect, thus
obtaining a prior 7r(x). Observations are now made at each site which record
the true pixel, black or white, with probability p E (0,1). The posterior
distribution for X given observations Y is then given by

7r(x I y) ex 7r(x)f(y I x) ex e- f3H (x)pa(x,y) (1 - p)d(x,y)

where a(x, y) and d(x, y) are the numbers of sites at which x and y agree and
disagree respectively. 'Cleaned-up' versions of the observed image Y may
now be obtained by simulating from the posterior distribution. Although
this is not exactly the Ising model, the same methods work. We describe
the appropriate Metropolis algorithm: given that X n = x, independently
for each m E A+\8A, change the sign of X:(m) with probability

p(m, x, y) = (7r(x IY)/7r(x I y)) 1\ 1

= e-2,6x(m)s(m)((1_ p)/pt(m)y(m)

where x ~ x with x(m) = -x(m). Call the resulting configuration X n +1/ 2 .

Next apply the corresponding transformation to X~+1/2 for the odd sites
to obtain X n+1 . Then (Xn)n~O is a Markov chain in /+ with invariant
distribution 7r(. I y).
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Appendix: probability and measure

Section 6.1 contains some reminders about countable sets and the discrete
version of measure theory. For much of the book we can do without explicit
mention of more general aspects of measure theory, except an elementary
understanding of Riemann integration or Lebesgue measure. This is because
the state-space is at worst countable. The proofs we have given may be read
on two levels, with or without a measure-theoretic background. When in­
terpreted in terms of measure theory, the proofs are intended to be rigorous.
The basic framework of measure and probability is reviewed in Sections 6.2
and 6.3. Two important results of measure theory, the monotone conver­
gence theorem and Fubini's theorem, are needed a number of times: these
are discussed in Section 6.4. One crucial result which we found impossi­
ble to discuss convincingly without measure theory is the strong Markov
property for continuous-time chains. This is proved in Section 6.5. Finally,
in Section 6.6, we discuss a general technique for determining probability
measures and independence in terms of 1r-systems, which are often more
convenient than a-algebras.

6.1 Countable sets and countable sums

A set I is countable if there is a bijection f : {I, . .. ,n} ~ I for some n E N,­
or a bijection f : N ~ I. In either case we can enumerate all the elements
of I
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where in one case the sequence terminates and in the other it does not.
There would have been no loss in generality had we insisted that all our
Markov chains had state-space N or {I, ... ,n} for some n E N: this just
corresponds to a particular choice of the bijection f.

Any subset of a countable set is countable. Any finite cartesian product
of countable sets is countable, for example tln for any n. Any countable
union of countable sets is countable. The set of all subsets of N is uncount­
able and so is the set of real numbers JR.

We need the following basic fact.

Lemma 6.1.1. Let I be a countably infinite set and let Ai ~ 0 for all i E I.
Then, for any two enumerations of I

~1, ~2, ~3, ••• ,

we have
00 00

LAin = LAin'
n=l n=l

Proof. Given any N E N we can find M ~ Nand N' ~ M such that

Then
N M N'

""" A· < """ A· < """ A·L.-J 't n - L.-J In - L.-J 't n

n=l n=l n=l

and the result follows on letting N ~ 00. D

Since the value of the sum does not depend on the enumeration we are
justified in using a notation which does not specify an enumeration and
write simply

More generally, if we allow Ai to take negative values, then we can set

where
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allowing that the sum over I is undefined when the sums over I+ and I­
are both infinite. There is no difficulty in showing for Ai, jji 2 0 that

I)Ai + Pi) = L Ai + LPi.
iEI iEI iEI

By induction, for any finite set J and for Aij 2 0, we have

L (LAij) = L (LAij).
iEI jEJ jEJ iEI

The following two results on sums are simple versions of fundamental
results for integrals. We take the opportunity to prove these simple versions
in order to convey some intuition relevant to the general case.

Lemma 6.1.2 (Fubini's theorem - discrete case). Let I and J be
countable sets and let Aij 2 0 for all i E I and j E J. Then

L (LAij) = L (LAij).
iEI jEJ jEJ iEI

Proof. Let jl,j2,j3, ... be an enumeration of J. Then

as n ~ 00. Hence

and the result follows by symmetry. D

Lemma 6.1.3 (Monotone convergence - discrete case). Suppose for
each i E I we are given an increasing sequence (Ai(n))n~O with limit Ai, .

and that Ai (n) 2 0 for all i and n. Then

LAi(n) i LAi as n-t 00.

iEI iEI
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Proof. Set 8i (1) = Ai(l) and for n ~ 2 set

Then 8i (n) ~ 0 for all i and n, so as n ~ 00, by Fubini's theorem

~Ai(n) = ~ (t,8i(k))

= t. (~8i(k)) i t. (~8i(k))

= L (f 8i(k)) = LAio

iEI k=l iEI

6.2 Basic facts of measure theory

D

We state here for easy reference the basic definitions and results of measure
theory. Let E be a set. A a-algebra £ on E is a set of subsets of E satisfying

(i) 0 E £;

(ii) A E £ =* AC E £;

(iii) (An E £,n E N) =* Un An E £.
Here AC denotes the complement E\A of A in E. Thus £ is closed under
countable set operations. The pair (E, £) is called a measurable space. A
measure J-l on (E, £) is a function J-l : £ ~ [0,00] which has the following
countable additivity property:

The triple (E, £, J-l) is called a measure space. If there exist sets En E £,
n E N with Un En = E and J-l(En) < 00 for all n, then we say J-l is a-finite.

Example 6.2.1

Let I be a countable set and denote by I the set of all subsets of I. Recall
that A = (Ai: i E I) is a measure in the sense of Section 1.1 if Ai E [0,00)
for all i. For such A we obtain a measure on the measurable space (I,I) by
setting

In fact, we obtain in this way all a-finite measures J-l on (I,I).
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Example 6.2.2

Let A be any set of subsets of E. The set of all subsets of E is a a­

algebra containing A. The intersection of any collection of a-algebras is
again a a-algebra. The collection of a-algebras containing A is therefore
non-empty and its intersection is a a-algebra a(A), which is called the
a-algebra generated by A.

Example 6.2.3

In the preceding example take E = JR and

A = {(a,b): a,b E JR,a < b}.

The a-algebra B generated by A is called the Borel a-algebra of JR. It can
be shown that there is a unique measure J.-t on (JR, B) such that

J.-t(a, b) = b - a for all a, b.

This measure J.-t is called Lebesgue measure.

Let (E1 , £1) and (E2 , £2) be measurable spaces. A function f : E 1 ~ E 2

is measurable if f-1(A) E £1 whenever A E £2. When the range E 2 = JR we
take £2 = B by default. When the range E2 is a countable set I we take £2
to be the set of all subsets I by default.

Let (E, £) be a measllrable space. We denote by m£ the set of measurable
functions f : E ~ JR. Then m£ is a vector space. We denote by m£+ the
set of measurable functions f : E ~ [0, 00], where we take on [0, 00] the
a-algebra generated by the open intervals (a, b). Then m£+ is a cone

(f, 9 E m£+ ,0:, (3 ~ 0) ~ o:f + {3g E m£+.

Also, m£+ is closed under countable suprema:

(fi E m£+,i E I) ~ SUpfi E m£+.
i

It follows that, for a sequence of functions f n E m£+, both lim sUPn fnand
lim infn fn are in m£+, and so is limn fn when this exists. It can be shown
that there is a unique map ji : m£+ ~ [0,00] such that

(i) ji(lA) = J.-t(A) for all A E £;

(ii) ji(o:f + (3g) = o:ji(f) + (3ji(f) for all f,g E m£+, 0:, {3 ~ 0;

(iii) (fn E m£+, n E N) ~ ji(En fn) = En ji(fn).
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For f E mE, set f± = (±f) V 0, then f+,f- E m£+, f = f+ - f- and
IfI= f+ + f-· If jt(lfl) < 00 then f is said to be integrable and we set

We call ji(f) the integral of f. It is conventional to drop the tilde and
denote the integral by one of the following alternative notations:

p(J) = r fdp = r f(x)p(dx).
lE lXEE

In the case of Lebesgue measure jj, one usually writes simply

r f(x)dx.
lXEJR

6.3 Probability spaces and expectation

The basic apparatus for modelling randomness is a probability space
(0, F, P). This is simply a measure space with total mass P(O) = 1. Thus
F is a a-algebra of subsets of 0 and P : F ~ [0,1] satisfies

(i) P(O) = 1;

(ii) P(AI n A 2 ) = P(AI ) + P(A2 ) for AI, A 2 disjoint;

(iii) P(An) i P(A) whenever An i A.

In (iii) we write An i A to mean Al ~ An ~ ... with Un An = A. A
measurable function X defined on (0, F) is called a random variable. We
use random variables Y : 0 ~ lR to model random quantities, where for a
Borel set B ~ lR the probability that Y E B is given by

P(Y E B) = P({w: Y(w) E B}).

Similarly, given a countable state-space I, a random variable X : 0 ~ I
models a random state, with distribution

Ai = P(X = i) = p({w : X(w) = i}).

To every non-negative or integrable real-valued random variable Y is asso­
ciated an average value or expectation E(Y), which is the integral of Y with
respect to P. Thus we have

(i) E(IA) = P(A) for A E F;

(ii) E(oX + (3Y) = oE(X) + (3E(Y) for X, Y E mF+, o,{3 ~ 0;
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(iii) (Yn E mF+, n E N, Yn i Y) :::} IE(Yn) i IE(Y).

When X is a random variable with values in I and f : I ~ [0,00] the
expectation of Y = f(X) = foX is given explicitly by

E(J(X)) = LAdi
iEI

where A is the distribution of X. For a real-valued random variable Y the
probabilities are sometimes given by a measurable density function p in
terms of Lebesgue measure:

P(Y E B) = Lp(y)dy.

Then for any measurable function f : lR ~ [0,00] there is an explicit formula

E(J(Y)) = Lf(y)p(y)dy.

6.4 Monotone convergence and Fubini's theorem

Here are the two theorems from measure theory that come into play in
the main text. First we shall state the theorems, then we shall discuss
some places where they are used. Proofs may be found, for example, in
Probability with Martingales by D. Williams (Cambridge University Press,
1991).

Theorem 6.4.1 (Monotone convergence). Let (E, £, J-t) be a measure
space and let (fn)n~l be a sequence of non-negative measurable functions.
Then, as n ~ 00

(fn(x) i f(x) for all x E E) :::} J-t(fn) i J-t(f)·

Theorem 6.4.2 (Fubini's theorem). Let (E1 , £1, J-l1) and (E2, £2, J-l2) be
two a-finite measure spaces. Suppose that f : E 1 x E 2 ~ [0, 00] satisfies

(i) x ~ f(x, y) : E1~ [0,00] is £1 measurable for all Y E E2;

(ii) Y ~ IXEE
1

f(x, y)J-t1(dx) : E2~ [0,00] is £2 measurable.
Then

(a) y ~ f(x, y) : E2~ [0,00] is £2 measurable for all x E E 1;

(b) x ~ fyE E
2

f(x, Y)J-l2(dy) : E 1~ [0,00] is £1 measurable;

(c) r (1 f(x,y)J-t2(dy~J-tl(dx)=1 (r f(X,Y)J-tl(dx~J-t2(dY).JxEE l yEE2 ') yEE2 JxEEl ')
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The measurability conditions in the above theorems rarely need much
consideration. They are powerful results and very easy to use. There is
an equivalent formulation of monotone convergence in terms of sums: for
non-negative measurable functions 9n we have

To see this just take .fn = 91 +... +9n. This form of monotone convergence
has already appeared in Section 6.2 as a defining property of the integral.
This is also a special case of Fubini's theorem, provided that (E, £, J-t) is
a-finite: just take E2 = {I, 2, 3, ... } and J-t2( {n}) = 1 for all n.

We used monotone convergence in Theorem 1.10.1 to see that for a non­
negative random variable Y we have

IE(Y) = lim IE(Y /\ N).
N--+oo

We used monotone convergence in Theorem 2.3.2 to see that for random
variables Sn ~ 0 we have

E(LSn) = LE(Sn)
n n

and

E(exp {- LSn}) =E(J~= exp {- L Sn})
n n~N

=J~=E(exp { - L Sn}).
n~N

In the last application convergence is not monotone increasing but mono­
tone decreasing. But if 0 ~ X n ~ Y and X n ! X then Y - X n i Y - X.
So IE(Y - X n) i IE(Y - X) and if IE(Y) < 00 we can deduce IE(Xn) ! IE(X).

Fubini's theorem is used in Theorem 3.4.2 to see that

Thus we have taken (E1, £1, J-t1) to be [0,00) with Lebesgue measure and
(E2, £2, J-t2) to be the probability space with the measure Pi.

6.5 Stopping times and the strong Markov property

The strong Markov property for continuous-time Markov chains cannot
properly be understood without measure theory. The problem lies with the
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notion of 'depending only on', which in measure theory is made precise as
measurability with respect to some a-algebra. Without measure theory the
statement that a set A depends only on (Xs : s ~ t) does not have a precise
meaning. Of course, if the dependence is reasonably explicit we can exhibit
it, but then, in general, in what terms would you require the dependence
to be exhibited? So in this section we shall give a precise measure-theoretic
account of the strong Markov property.

Let (Xt)t~O be a right-continuous process with values in a countable set
I. Denote by Ft the a-algebra generated by {Xs : s ~ t}, that is to say,
by all sets {Xs = i} for s ~ t and i E I. We say that a random variable T
with values in [0,00] is a stopping time of (Xt)t~O if {T ~ t} E Ft for all
t ~ O. Note that this certainly implies

{T<t}=U{T::;t-l/n}EFt forall t~O.
n

We define for stopping times T

FT = {A E F : A n {T ~ t} E Ft for all t ~ O}.

This turns out to be the correct way to make precise the notion of sets
which 'depend only on {Xt : t ~ T}'.

Lemma 6.5.1. Let Sand T be stopping times of (Xt)t~o. Then both X T
and {S ~ T} are FT-measurable.

Proof. Since (Xt)t~O is right-continuous, on {T < t} there exists an n ~ 0
such that for all m ~ n, for some k ~ 1, (k - 1)2-m ~ T < k2-m ~ t and
X k2 -rn = X T . Hence

so X T is FT-measurable.

We have

{S>T}n{T~t}= U ({T~s}n{S>s})EFt
sEQ,s~t

so {S > T} E Fr, and so {S ~ T} E Fr· D
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Lemma 6.5.2. For all m ~ 0, the jump time Jm is a stopping time of
(Xt)t~o.

Proof. Obviously, Jo = 0 is a stopping time. Assume inductively that Jm

is a stopping time. Then

{Jm +! ~ t} = U {Jm ~ s} n {Xs =1= X J71J E Ft

sEQ,s~t

for all t ~ 0, so Jm +1 is a stopping time and the induction proceeds. D

We denote by Qm the a-algebra generated by yo,··· ,Ym and 81 , ... ,8m,
that is, by events of the form {Yk = i} for k ~ m and i E I or of the form
{8k > s} for k ~ m and s > o.
Lemma 6.5.3. Let T be a stopping time of (Xt)t~O and let A EFT.
Then for all m ~ 0 there exist a random variable Tm and a set Am, both
measurable with respect to Qm, such that T = Tm and lA = lA

Tn
on

{T < Jm +1 }.

Proof. Fix t ~ 0 and consider

Since Qm is a a-algebra, so is At. For s ~ t we have

{Xs = i} n {t < Jm +1}

= (D\Yk =i,Jk ~ s < Jk+l}U{Ym =i,Jm ~ s}) n{t< Jm+d
k=O

so {Xs = i} E At. Since these sets generate Ft , this implies that At = Ft·
For T a stopping time and A E FT we have B(t) := {T :s; t} E Ft and

A(t) := An {T ~ t} E Ft for all t ~ O. So we can find Bm(t), Am(t) E Qm
such that

B(t) n {T < Jm+1} = Bm(t) n {T < Jm+1},

A(t) n {T < Jm+1 } = Am(t) n {T < Jm+1 }.

Set
Am = U Am(t)

tEQ

then Tm and Am are Qm-measurable and

Tml{T<JTn+l} = suptlBTn (t)n{T<JTn +l}
tEQ

= (sup tl{T~t}) l{T<JTn+l} = Tl{T<JTn+l}
tEQ
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and

Am n {T < Jm+d = UAm(t) n {T < Jm+d
tEQ

= U(A n {T ~ t}) n {T < Jm+d = An {T < Jm+d
tEQ

as required. D

Theorem 6.5.4 (Strong Markov property). Let (Xt)(~O be
Markov(A, Q) and let T be a stopping time of (Xt)(~o. Then, conditional
on T < ( and X T = i, (XT+t)(~O is Markov(8i , Q) and independent of FT.

Proof On {T < (} set Xt = X T +t and denote by (Yn)n~O the jump chain
and by (Sn)n~1 the holding times of (Xt)t~o. We have to show that, for all
A EFT, all io, ... ,in E I and all S1, ... ,Sn ~ 0

IF({Yo = io, ... ,Yn = in, 81 > S1, ... ,8n > sn} nAn {T < (} n {XT = i})

= lFi(YO = io, ... , Yn = in, 81 > S1, ... ,8n > sn)

X IF(A n {T < (} n {XT = i}).

It suffices to prove this with {T < (} replaced by {Jm ~ T < Jm +1 }

for all m ~ 0 and then sum over m. By Lemmas 6.5.1 and 6.5.2,
{Jm ~ T} n {XT = i} E FT so we may assume without loss of generality
that A ~ {Jm ~ T} n {XT = i}. By Lemma 6.5.3 we can write T = Tm

and 1A = 1A
Tn

on {T < Jm +1 }, where Tm and Am are Qm-measurable.

. 81 : 82
:c: .:c: .:

o
8m +1 :

i
T

On {Jm ~ T < Jm +1 } we have, as shown in the diagram
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Now, conditional on Ym = i, 8m+1 is independent of gm and hence of
Tm - Jm and Am and, by the memoryless property of the exponential

Hence, by the Markov property of the jump chain

P({Yo = io, ,Yn = in,

81 > 81, ,8n > 8 n } nAn {Jm ~ T < Jm +1 } n {XT = i})

= p({Ym = io,· .. , Ym+n = in, 8m+1 > 81 + (Tm - Jm),

8m+2 > 82, ,8m+n > 8 n} n Am n {8m+1 > Tm - Jm })

= Pi(Yo = io, ,Yn = in,

8 1 > 81, ,8n > 8 n )P(A n {Jm ~ T < Jm +1 } n {XT = i})

as required. D

6.6 Uniqueness of probabilities and independence of a-algebras

For both discrete-time and continuous-time Markov chains we have given
definitions which specify the probabilities of certain events determined by
the process. From these specified probabilities we have often deduced ex­
plicitly the values of other probabilities, for example hitting probabilities.
In this section we shall show, in measure-theoretic terms, that our defini­
tions determine the probabilities of all events depending on the process.
The constructive approach we have taken should make this seem obvious,
but it is illuminating to see what has to be done.

Let 0 be a set. A 7r-system A on 0 is a collection of subsets of 0 which
is closed under finite intersections; thus

We denote as usual by a(A) the a-algebra generated by A. If a(A) = :F
we say that A generates :F.

Theorem 6.6.1. Let (O,:F) be a measurable space. Let PI and P2 be
probability measures on (0, F) which agree on a 7r-system A generating :F.

Then PI = P2 ·

Proof. Consider
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We have assumed that A ~ V. Moreover, since PI and P2 are probability
measures, V has the following properties:

(i) 0 E V;

(ii) (A, B E V and A ~ B) :::} B\A E V;

(iii) (An E V, An i A) :::} A E V.

Any collection of subsets having these properties is called a d-system. Since
A generates F, the result now follows from the following lemma. D

Lemma 6.6.2 (Dynkin's 1r-system lemma). Let A be a 1r-system and
let V be a d-system. Suppose A ~ V. Then a(A) ~ V.

Proof. Any intersection of d-systems is again a d-system, so we may without
loss assume that V is the smallest d-system containing A. You may easily
check that any d-system which is also a 1r-system is necessarily a a-algebra,
so it suffices to show V is a 1r-system. This we do in two stages.

Consider first

VI = {A E V : A n B E V for all B E A}.

Since A is a 1r-system, A ~ VI. You may easily check that VI is ad-system
- because V is a d-system. Since V is the smallest d-system containing A,
this shows VI = V.

Next consider

V 2 = {A E V : A n B E V for all B E V}.

Since VI = V, A ~ V 2 . You can easily check that V 2 is also ad-system.
Hence also V 2 = V. But this shows V is a 1r-system. D

The notion of independence used in advanced probability is the indepen­
dence of a-algebras. Suppose that (0, F, P) is a probability space and F1

and F2 are sub-a-algebras of F. We say that Fl and F2 are independent if

The usual means of establishing such independence is the following corollary
of Theorem 6.6.1.

Theorem 6.6.3. Let Al be a 1r-system generating F 1 and let A2 be a
1r-system generating F2. Suppose that

Then Fl and F2 are independent.
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Proof. There are two steps. First fix A 2 E A 2 with P(A2 ) > 0 and consider
the probability measure

We have assumed that P(A) = P(A) for all A E AI, so, by Theorem 6.6.1,
jp> = P on :Fl. Next fix Al E :F1 with P(A1) > 0 and consider the probability
measure

We showed in ~e first step that P(A) = P(A) for all A E A2, so, by

Theorem 6.6.1, P = P on :F2 . Hence:F1 and :F2 are independent. D

We now review some points in the main text where Theorems 6.6.1 and
6.6.3 are relevant.

In Theorem 1.1.1 we showed that our definition of a discrete-time Markov
chain (Xn)n~O with initial distribution ,\ and transition matrix P deter­
mines the probabilities of all events of the form

But subsequently we made explicit calculations for probabilities of events
which were not of this form - such as the event that (Xn)n~O visits a set
of states A. We note now that the events {Xo = io, ... ,Xn = in} form a
1r-system which generates the a-algebra a(Xn : n ~ 0). Hence, by Theorem
6.6.1, our definition determines (in principle) the probabilities of all events
in this a-algebra.

In our general discussion of continuous-time random processes in Section
2.2 we claimed that for a right-continuous process (Xt)t~O the probabilities
of events of the form

for all n ~ 0 determined the probabilities of all events depending on (Xt)t~o.

Now events of the form {Xto = io, ... ,Xtn = in} form a 1r-system which
generates the a-algebra a(Xt : t ~ 0). So Theorem 6.6.1 justifies (a precise
version) of this claim. The point about right-continuity is that without
such an assumption an event such as

{Xt = i for some t > O}

which might reasonably be considered to depend on (Xt)t~O, is not nec­
essarily measurable with respect to a(Xt : t ~ 0). An argument given in
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Section 2.2 shows that this event is measurable in the right-continuous case.
We conclude that, without some assumption like right-continuity, general
continuous-time processes are unreasonable.

Consider now the method of describing a minimal right-continuous pro­
cess (Xt)t~O via its jump process (Yn)n~O and holding times (Sn)n~1. Let
us take F = a(Xt : t ~ 0). Then Lemmas 6.5.1 and 6.5.2 show that (Yn)n~O

and (Sn)n~1 are F-measurable. Thus 9 ~ F where

9 = a((Yn)n~O' (Sn)n~1).

On the other hand, for all i E I

{Xt = i} = U{In ~ t < In+d n {Yn = i} E g,
n~O

so also F C g.
A useful1r-system generating 9 is given by sets of the form

B = {Yo = i o, .. · ,Yn = in,S1 > S1,·.· ,Sn > sn}.

Our jump chain/holding time definition of the continuous-time chain
(Xt)t~O with initial distribution .x and generator matrix Q may be read
as stating that, for such events

l1J)(B) - \ . I'fr.. I'fr. • e-qio81 e-qin-18n
C - A'tO"'tO'tl ••• "'tn-l'tn ••• •

Then, by Theorem 6.6.1, this definition determines JP> on 9 and hence on F.
Finally, we consider the strong Markov property, Theorem 6.5.4. Assume

that (Xt)t~O is Markov(.x, Q) and that T is a stopping time of (Xt)t~o. On
the set n= {T < (} define Xt = X T +t and let j = a(Xt : t ~ 0); write
CYn)n~O and (Sn)n~O for the jump chain and holding times of (Xt)t~O and
set

9 = a((Yn)n~O' (Sn)n~O).

Thus F and 9 are a-algebras on n, and coincide by the same argument as
for F = g. Set

B = {Yo = i o, ... ,Yn = in,S1 > S1, .. · ,Sn > sn}.

Then the conclusion of the strong Markov property states that

JP>(B IT < (, X T = i) = lPi(B)

with B as above, and that

JP>(C n A IT < (,XT = i) = JP>(C IT < (,Xt = i)JP>(A IT < (,XT = i)

for all C E F and A E FT. By T~eore~ 6.6.3 it suffices to prove the
independence assertion for the case C = B, which is what we did in the
proof of Theorem 6.5.4.
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mi, expected return time 37, 118
J.t{, expected time in i between visits

to j 118
Markov(:A, P) 2
Markov(:A, Q) 94,97
Markov chain

continuous-time 88
discrete-time 2

Markov chain Monte Carlo 206, 208
Markov decision process 197

expected total cost 198
expected total discounted cost 202
long-run average costs 204

Markov property 3
for birth processes 84
for continuous-time chains 93
for Poisson process 75

martingale 129, 141, 176, 204
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associated to a Markov chain 132
associated to Brownian motion

169
matrix exponentials 105
maximum likelihood estimate 56
measure 1
memoryless property 70
Metropolis algorithm 210
minimal non-negative solution 13
minimal process 69
monotone convergence 223

discrete case 219
Moran model 177
mutation 6, 176

non-minimal chains 103
null recurrence 37, 118

o(t),O(t), order notation 63
Ohm's law 151
open migration process 185
optional stopping theorem 130

IP, probability 222
P, transition matrix 2
[>, transition matrix of reversed

chain 47
P(t), transition semigroup 96

P(t), semigroup of reversed chain
124

p~j), n-step transition probability 5
II, jump matrix 87
1r-system 228
Poisson process 74

infinitesimal definition 76
jump chain/holding time definition

76
transition probability definition 76

policy 198
policy improvement 201
population genetics 175
population growth 171
positive recurrence 37, 118
potential 138

associated to a Markov chain 138
associated to Brownian motion

169

Index

gravitational 134
in electrical networks 151
with discounted costs 142

potential theory 134
probability generating function 171
probability measure 222
probability space 222

Q-matrix 60
Q, generator matrix of reversed chain

124
qi, rate of leaving i 61
qij, rate of going from i to j 61
queue 179

MIGll 187
M/G/oo 191
MIMll 180
M/M/s 182

queueing network 183-185
queues in series 183

random chessboard knight 50
random walk

on tld 29
on a graph 49

recurrence 24, 114, 167
recurrence relations 57
reflected random walks 195
reservoir model 194, 195
resolvent 146
resource management 192
restocking a warehouse 192
return probability 25
reversibility 48, 125
right-continuous process 67
ruin

gambler 15
insurance company 196

selective advantage 176
semigroup 96
semigroup property 62
service times 180
shopping centre 185
simple birth process 82
simulation 206
skeleton 122
state-space 1



stationary distribution 33, 117
stationary increments 76
stationary.policy 198
statistics 55, 211, 215
stochastic matrix 2
stopping time 19
strong law of large numbers 52
strong Markov property 19, 93, 227
success-run chain 38
susceptible 173

telephone exchange 183
texture parameter 216
time reversal 47, 123
transience 24, 114, 167
transition matrix 2

irreducible 11

Index 237

maximum likelihood estimate 56
transition semigroup 165
truncated Poisson distribution 183

unit mass 3

Vi(n), number of visits to i before n
53

valency 50
value function 198

weak convergence 164
Wiener process 159
Wiener's theorem 161
Wright-Fisher model 175

(, explosion time 69




