
17

Improved Bounds on the Average Length of Longest

Common Subsequences

GEORGE S. LUEKER

University of California, Irvine, California

Abstract. It has long been known [Chvátal and Sankoff 1975] that the average length of the longest
common subsequence of two random strings of length n over an alphabet of size k is asymptotic to γkn
for some constant γk depending on k. The value of these constants remains unknown, and a number
of papers have proved upper and lower bounds on them. We discuss techniques, involving numerical
calculations with recurrences on many variables, for determining lower and upper bounds on these
constants. To our knowledge, the previous best-known lower and upper bounds for γ2 were those
of Dančı́k and Paterson, approximately 0.773911 and 0.837623 [Dančı́k 1994; Dančı́k and Paterson
1995]. We improve these to 0.788071 and 0.826280. This upper bound is less than the γ2 given by
Steele’s old conjecture (see Steele [1997, page 3]) that γ2 = 2/(1 + √

2) ≈ 0.828427. (As Steele
points out, experimental evidence had already suggested that this conjectured value was too high.)
Finally, we show that the upper bound technique described here could be used to produce, for any k,
a sequence of upper bounds converging to γk , though the computation time grows very quickly as
better bounds are guaranteed.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—pattern matching; G.2.1 [Discrete Mathematics]: Com-
binatorics—generating functions, recurrences and difference equations; G.3 [Mathematics of Com-
puting]: Probability and Statistics

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Longest common subsequences, average-case analysis, dynamic
programming, Arratia-Steele conjecture

ACM Reference Format:

Lueker, G. S. 2009. Improved bounds on the average length of longest common subse-
quences. J. ACM 56, 3, Article 17 (May 2009), 38 pages. DOI = 10.1145/1516512.1516519
http://doi.acm.org/10.1145/1516512.1516519

This article combines results that were presented in preliminary form in “Expected length of longest
common subsequences,” in DIMACS Workshop on Probabilistic Analysis of Algorithms for Hard
Problems, 1999; “Improved bounds on the average length of longest common subsequences,” in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York,
2003, 130–131; and “On the convergence of upper bound techniques for the average length of longest
common subsequences,” in Proceedings of the 4th Workshop on Analytic Algorithmics and Combi-
natorics, 2008, 169–182.
Author’s address: Department of Computer Science, Donald Bren School of Information & Computer
Sciences, University of California, Irvine, Irvine, CA 92697-3435.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0004-5411/2009/05-ART17 $10.00
DOI 10.1145/1516512.1516519 http://doi.acm.org/10.1145/1516512.1516519

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:2 G. S. LUEKER

1. Introduction

Given a string of characters A = a1a2 · · · an , a subsequence of A is any string
which can be obtained by deleting some of the characters in A. Given another
string B = b1b2 · · · bm , a longest common subsequence (abbreviated lcs) of A and
B is a longest string which is a subsequence of both A and B; we denote the length
of such a string by L(A, B).

Let a random string of length n be a string of length n in which each character is
chosen uniformly and independently from � = {0, 1, . . . , k − 1}. Let Ln,n be the
random variable giving the length of a longest common subsequence of two inde-
pendent random strings of length n. By subadditivity there exists a constant γk > 0,
depending on k, such that [Chvátal and Sankoff 1975]

lim
n→∞

E[Ln,n]

n
= γk .

While the values of the γk are not known exactly, determination of bounds on their
value has drawn attention; for an early reference, see Chvátal and Sankoff [1975].
For some history and more references, see Baeza-Yates et al. [1999], Dančı́k [1994],
Dančı́k and Paterson [1995], and Steele [1997]. (For the problem of the longest
common subsequence of n, rather than just 2, random strings of length n, the
corresponding value is known to be 1/k [Jiang and Li 1995].) The breakthrough
paper [Kiwi et al. 2005] showed that

lim
k→∞

√
kγk = 2,

establishing the Sankoff-Mainville conjecture. In this article, we primarily concen-
trate on bounding γ2. To my knowledge, the best previous bounds on γ2, both upper
and lower, are those of Dančı́k [1994] and Dančı́k and Paterson [1995], namely,
0.773911 and 0.837623.

Section 2 presents an improved lower bound of 0.788071, and Section 3 presents
an improved upper bound of 0.826280. This upper bound finally resolves in the
negative Steele’s old conjecture (see Steele [1997, page 3]) that γ2 = 2/(1+√

2) ≈
0.828427; as Steele points out, experimental evidence had already suggested that
this conjectured value was too high. Put another way, this shows that the Arratia-
Steele conjecture (see Pevzner [2000, Section 6.8, page 107]) fails even for alphabet
size 2. Section 3.3 shows that, for any k ≥ 2, the method of Section 3 can produce
a sequence of bounds converging to the true value of γk .

We hope that this article will be of wide interest because

—the longest common subsequence problem has a variety of applications and has
been extensively studied,

—we show how a method involving extensive computation can be applied to the
average-case analysis of this problem to improve bounds published in the mid-90s
and disprove a conjecture that has been open since the 80s,

—we carefully consider the effect of roundoff error on the validity of the bounds
we obtain, and

—we show that for any k ≥ 2 our upper bound technique yields upper bounds that
converge to the true value of γk .

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences 17:3

2. Lower Bounds

We only consider lower bounds for the case of binary alphabets, that is, k = 2, so
in this section we will simply write γ to denote γ2.

2.1. PREVIOUS RESULTS. To obtain lower bounds, Dančı́k [1994] uses the fol-
lowing approach. Build a finite-state automaton that can read input characters,
left-to-right, from the strings A and B; it produces one character of output when-
ever it matches a character from A and B. The behavior of this machine on random
input can be modeled by a Markov chain. Under reasonable conditions on the ma-
chine, one can find the steady-state distribution of the chain and then compute the
expected number of characters output at each transition as the dot product of
the vector giving the stationary probability for each state and the vector giving
the expected number of characters output on the next move from each state. In fact,
by a result of Alexander [1994] (given in (2) below) one need not require that the
machine read the strings A and B at the same rate; one can obtain a lower bound
on γ by simply controlling the total number of characters read. In Dančı́k [1994],
a specific finite state automaton, with 931 states, is used to produce a lower bound
of 0.773911; a mechanical procedure that could be used to produce a sequence of
machines that give lower bounds that approach the true value of γ in the limit is
also presented there.

2.2. A DYNAMIC PROGRAMMING APPROACH. In this section, we briefly de-
scribe our variation and present the resulting improved lower bounds on γ . Intu-
itively, in order to produce a machine with a finite number of states, we simply
keep a buffer of h characters from each of the two strings being matched. When
possible, we match and delete the leftmost characters of the two buffers; when not,
we have to discard a character from the left of one of the buffers. As these characters
disappear from the left ends of the buffers, we read in new characters from the input
strings at the right ends of the buffers. This is quite similar to the method discussed,
for example, in Dančı́k [1994] and Paterson and Dančı́k [1994]; the key difference
is that instead of being careful in choosing which states (corresponding to buffer
contents of various lengths) to use, we simply let the state set be all 22h possible
distinct pairs of strings of length h.

Let x1x2 · · · xn and y1 y2 · · · yn be two independent random binary strings
of length n; let X (i) (respectively, Y (j)) denote the string x1x2 · · · xi (respec-
tively, y1 y2 · · · y j). As noted in Dančı́k [1994, Theorem 2.2], if we define the
diagonal longest common subsequence by

Dn = max
i+ j=n

L(X (i), Y (j)), (1)

then it follows from the results of Alexander [1994] that

E [Dn] ∼ γ n/2. (2)

Now let s and t be specific binary strings, and define

vn(s, t) = E
[

max
i+ j=n

L(sx1x2 · · · xi , t y1 y2 · · · y j)
]
.

Informally vn(s, t) tells us the expected length of the longest common subse-
quence we can obtain from s and t if we are allowed to first pad them randomly

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:4 G. S. LUEKER

with n additional characters. One easily sees that regardless of s and t ,

γ = lim
n→∞

1

n
v2n(s, t); (3)

note that the fact that we need not pad s and t with equal numbers of characters
follows from (2). Let 	vn be the vector whose components are all the values of
vn(s, t), as s and t range over all strings of length h. Using ideas similar to the
standard dynamic programming solution (see, e.g., [Pevzner 2000, Ch. 6]), it is
straightforward to obtain a lower bound on each component of 	vn as a function of
elements of 	vn−1 or 	vn−2. For example, with h = 3, by matching the initial 0 in 001
and 010, we can conclude

vn(001, 010) ≥ 1 + 1

4

∑
(c,c′)∈{0,1}×{0,1}

vn−2(01c, 10c′); (4)

as another example, even though 001 and 111 begin with different characters, we
can discard a character from the left end of either, so we conclude

vn(001, 111) ≥ max

{
1
2

∑
c∈{0,1} vn−1(01c, 111)

1
2

∑
c∈{0,1} vn−1(001, 11c).

(5)

Let �1(v) (respectively, �0(v)) denote the projection that selects just the com-
ponents of 	v corresponding to pairs of strings whose first characters match (re-
spectively, do not match). Let (· ‖ ·) denote the operator that reconstructs an entire
vector from its two projections, so that

	v = (�0(v) ‖ �1(v)). (6)

Note that for a suitably defined T1, all of the bounds exemplified in (4) can be
written as

�1(vn) ≥ T1(vn−2).

Similarly, one can define a T0 such that all the bounds exemplified in (5) can be
written as

�0(vn) ≥ T0(vn−1).

Note that both T0 and T1 are translationally invariant in the sense that for any real r ,

T0(v + r) = T0(v) + r and T1(v + r) = T1(v) + r, (7)

where addition of a real to a vector is done componentwise, for example, (0.1, 0.2)+
3 = (3.1, 3.2). They are also monotonic in the sense that

	v ′ ≥ 	v =⇒ T0(v ′) ≥ T0(v) and T1(v ′) ≥ T1(v),

where the inequalities hold componentwise.1

Also note that T0, while not being a linear transformation, does scale linearly in
the sense that

T0(α	v) = αT0(v). (8)

1 This separate discussion of T0 and T1 rather than directly defining T may seem somewhat cumber-
some, but it will provide a useful foundation for Section 2.3.2.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences 17:5

While T1 does not scale linearly, one easily sees that T1 − 1 does, in the sense that

T1(α	v) − 1 = α(T1(v) − 1),

implying

T1(α	v) = αT1(v) + 1 − α. (9)

Now if we define T by

T (v, 	v ′) = (T0(v) ‖ T1(v ′)), (10)

all of the bounds in (4) and (5) can be written as

∀n ≥ 2 	vn ≥ T (vn−1, 	vn−2). (11)

Note that this T inherits translational invariance and monotonicity from T0 and T1.

OBSERVATION 2.1. If T is monotonic and translationally invariant, and there
exists a vector 	v and real r such that

T (v, 	v − r) ≥ 	v + r, (12)

then for any sequence 	v0, 	v1, . . . satisfying (11) there exists a scalar constant c
such that

∀n ≥ 0 	vn ≥ 	v + nr − c. (13)

PROOF. We use induction on n. Clearly, we can pick a c large enough so that
(13) holds for n ∈ {0, 1}. For the inductive step, assume n > 1 and note that

	vn ≥ T (vn−1, 	vn−2)
≥ T (v + (n − 1)r − c, 	v + (n − 2)r − c)
≥ T (v, 	v − r) + (n − 1)r − c
≥ 	v + r + (n − 1)r − c = 	v + nr − c.

Thus, if (12) holds for the T of (10), we can conclude from (3) and (13) that
γ ≥ 2r .

Compared to the finite state automaton analysis in work such as Dančı́k [1994]
and Paterson and Dančı́k [1994], this approach produces the recurrence by brute
force rather than trying to design a suitable finite state automaton. Also, it is a bit
more flexible than using fixed finite automata, since we need not specify in advance
which of the cases in (5) to use.

We can find a good choice for the 	v and r in (12) as follows. In practice, it appears
that we can iterate

	wn = T (wn−1, 	wn−2), (14)

and have 	wn − 	wn−1 converge to a vector all of whose components are nearly
equal; then 	wn for some large n serves as a good choice of 	v . (We do not prove this
convergence, but this does not compromise the results of this section, since any 	v
and r satisfying (12) serve as a witness that γ ≥ 2r , regardless of how they were
computed.) Thus, we need not solve a Markov chain for a steady-state distribution.
(Of course, this approach could also be used for analyzing finite state automata.)

It is worth noting that the nature of the recurrences produced is such that com-
puting successive values of 	vn could be done conveniently while storing all of the

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:6 G. S. LUEKER

vectors on external memory. We did not use that approach in the computations re-
ported here, however. Instead, as described in Section 2.3 below, we took advantage
of a number of symmetries to enable the entire vector, with h = 15, to fit into the
internal memory of a 1-Gigabyte machine.

Although here we only consider the case of alphabets of size 2 and longest com-
mon subsequences of 2 strings, [Kiwi and Soto 2008] shows how this lower bound
method can be extended to finding lower bounds for longest common subsequences
of more than 2 strings and alphabets of size greater than 2.

2.3. SOME IMPLEMENTATION DETAILS. In an effort to achieve greater effi-
ciency, we actually carried out the computations a bit differently than described
above, as described below.

2.3.1. Some Identities. Of course, as has been noticed before (see, e.g., Dančı́k
[1994], Dančı́k and Paterson [1995], and Steele [1997]), one can take advantage of
a few symmetries when dealing with such calculations. In particular,

vn(s, t) = vn(t, s), (15)

and if an overbar represents complementation of all bits, we have

vn(s, t) = vn(s, t). (16)

Also, if for some integer m ∈ [1, h] the leftmost m bits of s and t match, then the
value of vn(s, t) is independent of the values of these matching bits.

By using all three of these facts, we were able to reduce the number of components
of the vector that needed to be stored by a factor of about six, from 230 to 178973355
for h = 15.

2.3.2. Simplifying the Recurrence. Note that to iterate (14) in the naive way,
we would simultaneously maintain values of 	vi , for three consecutive integers i , in
memory. We kept only one vector in memory. One was written to external memory
as it was computed, and another one was eliminated as follows. Suppose that instead
of finding a 	v satisfying (12) we find a 	w satisfying

T (w, 	w) ≥ 	w + r ′. (17)

(Note that the second argument to T is 	w rather than 	w − r ′.) As before, in practice
such a 	w can be found by iterating

	wn = T (wn−1, 	wn−1). (18)

This makes it possible to keep just one value of copy of 	wi at a time in memory.
By a simple induction 	wn satisfies the same identities that were mentioned for 	vn
in Section 2.3.1, so we can still save a factor of about 6 when storing this vector.
Of course, a 	w and r ′ satisfying (17) do not directly give us a 	v and r satisfying
(12), but we can easily compute them in the following way.

Intuitively, using (18) instead of (14) is equivalent to charging for only one of the
two new characters we draw after making a match. Equivalently, it can be viewed
as giving a free extra character whenever there is a match. Thus, we expect that
the true value of γ satisfies r ′n ≤ (γ /2)(n + r ′n). (The term r ′n on the right
corresponds to the fact that the matches gave us r ′n free characters.) Thus, we
expect that γ ≥ 2r ′/(1 + r ′).

More formally, we make the following observation.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences 17:7

LEMMA 2.2. Suppose that some vector 	w and real r ′ satisfy (17). Then, if we
let

α = 1

1 + r ′ , r = αr ′, and 	v = α 	w, (19)

we have

T (v, 	v − r) ≥ 	v + r. (20)

PROOF. Using (6) and (10), we see that (17) implies

T0(w) ≥ �0(w) + r ′ and T1(w) ≥ �1(w) + r ′. (21)

We now verify that this and (19) imply (20). Using (19), then (10), and finally (7),
(8), and (9), we have

T (v, 	v − r) = T (α 	w, α 	w − αr ′)
= (T0(α 	w) ‖ T1(α 	w − αr ′))
= (αT0(w) ‖ αT1(w) + 1 − α − αr ′). (22)

Applying (21) and simplifying using (19) we see that this is greater than or equal
to

(α(�0(w) + r ′) ‖ α(�1(w) + r ′) + 1 − α − αr ′)
= (α�0(w) + αr ′ ‖ α�1(w) + 1 − α)
= (α�0(w) + r ‖ α�1(w) + r) = α 	w + r = 	v + r, (23)

so we have established the lemma.
Using this lemma and Observation 2.1 above, we conclude

LEMMA 2.3. If there exists a vector 	w and real r ′ such that

T (w, 	w) ≥ 	w + r ′,

then

γ ≥ 2r ′

1 + r ′ .

2.4. THE VALUES OF THE LOWER BOUNDS. This approach to finding lower
bounds on γ , and Observation 2.1 above, seem so simple and natural that one
would suspect one or both have been observed before. However, if so, it seems they
have not been fully exploited before, since carrying out this process for various
values of h gives the results appearing in Table I. For the results reported in this
figure, we used integers to implement fixed-point arithmetic and always rounded
downwards during the computation of T when verifying (17). This approach makes
it easy to control the effects of numerical error in the computation.

Note that the values in the table give an improvement over previous results
when h ≥ 7.

3. Upper Bounds

3.1. EARLIER WORK. We begin by discussing the results of Dančı́k [1994] and
Dančı́k and Paterson [1995]. This discussion differs a bit from that of Dančı́k [1994]
and Dančı́k and Paterson [1995], and uses a framework sufficiently general to cover
our modification as well.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:8 G. S. LUEKER

TABLE I. LOWER BOUNDS

h Dimension of vector Lower bound on γ

1 2 0.666666
2 5 0.727272
3 15 0.747922
4 51 0.758576
5 187 0.765446
6 715 0.770273
7 2795 0.773975
8 11051 0.776860
9 43947 0.779259
10 175275 0.781281
11 700075 0.783005
12 2798251 0.784515
13 11188907 0.785841
14 44747435 0.787017
15 178973355 0.788071
All values are for a binary alphabet. Parameter h
controls the size of the computation.

Let a string pair be a pair of strings over �, say a1a2 · · · ai and b1b2 · · · b j ; we
denote the string pair by P = (a1a2···ai

b1b2···b j

)
. Call a1a2 · · · ai the top string and b1b2 · · · b j

the bottom string, and say P is of size s(P) = i + j . Let lcs(P) be the length of
a longest common subsequence of the top and bottom strings of P . Call the string
pair

(a1a2···ai
b1b2···b j

)
a match pair if ai = b j . Say that this match pair ends with an essential

match if any longest common subsequence must match ai and b j , that is, if both

lcs
(

a1a2 · · · ai−1

b1b2 · · · b j

)
< lcs

(
a1a2 · · · ai

b1b2 · · · b j

)

and

lcs
(

a1a2 · · · ai

b1b2 · · · b j−1

)
< lcs

(
a1a2 · · · ai

b1b2 · · · b j

)
.

(This is essentially the same concept as the minimal candidates of Hirschberg [1977]
and dominant matches of Apostolico and Guerra [1987].) A minimal match pair is
a match pair P = (a1a2···ai

b1b2···b j

)
that ends on an essential match and has lcs(P) = 1.

We will call ai and b j , which must be equal, the match character of P , and call
the other characters in P the padding characters of P . Call a string pair P a null
pair if lcs(P) = 0, that is, if the top and bottom strings of P have no characters in
common; the simplest null pair is

(
ε

ε

)
, where ε denotes the empty string.

Let G(n, �) be the number of string pairs of size n that have an lcs of length
at least �. As pointed out in Dančı́k [1994] and Dančı́k and Paterson [1995], the
following easily proven theorem has been the basis of a number of published bounds:

THEOREM 3.1 ([CHVÁTAL AND SANKOFF 1975, P. 310]). If for some alphabet
of size k, and for some y ∈ (0, 1), we have

G(2n, yn) = o(k2n)

as n → ∞, then γk ≤ y.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences 17:9

Note that we can bound G(n, �) by counting the number of ways we can con-
catenate � minimal match pairs, followed by one more string pair, to obtain a string
pair of size n. This bound can however be very weak; in particular, many different
lists of match pairs may generate the same string pair. Much of the history of im-
provements in bounds on γ corresponds to improved methods for minimizing this
overcounting; see Dančı́k [1994, Section 4.2] for more about this history. (We note
that this is not the only approach presently known for computing upper bounds on
expected longest common subsequence lengths; for example, see Baeza-Yates et al.
[1999], which applies Kolmogorov complexity to obtain bounds.) We can abstract
the process of minimizing the overcounting by defining a finite-state machine that
restricts which lists of minimal match pairs will be counted. First, we give some
definitions.

It will be convenient to consider lists of string pairs. Say that the length of such
a list L is the number of elements (i.e., the number of string pairs) in the list, and
that the size of L , written s(L), is the total number of characters in all of the string
pairs in L . Note that we do not use the terms size and length interchangeably; for
example, the list of string pairs(

230

10

)(
012

2

)(
13

23

)
has length 3 and size 13. We will use ‖ to indicate concatenation of lists of string
pairs; when an argument of ‖ is a single string pair, we will promote it to the list
with that one pair as its only element so we can for example write L ‖ (0

0

)
to denote

the list obtained by appending the pair
(0

0

)
to the list L . Following Dančı́k [1994]

and Dančı́k and Paterson [1995] say that an arbitrary list
(x1

y1

)(x2

y2

) · · · (x�

y�

)
of string

pairs generates the string pair
(x1x2···x�

y1 y2···y�

)
, and write this as

cat
((

x1

y1

)(
x2

y2

)
· · ·

(
x�

y�

))
=

(
x1x2 · · · x�

y1 y2 · · · y�

)
. (24)

Note that the size of a list of string pairs is always the same as the size of the string
pair it generates.

Now let M be a finite-state machine that takes as input lists of minimal match
pairs; for each such list it accepts or rejects. This goes slightly outside the usual
definition of finite-state machine since the input alphabet, namely, the set of minimal
match pairs, has infinite cardinality, but this will cause no problems, and in practice
it will be easy to restrict our attention to a finite subset of the minimal match
pairs; see the comments following (36) below. We will always assume that once M
reaches a rejecting state it will remain in that state; thus it can accept a list only if
it accepts every prefix of that list. In view of this we can assume without loss of
generality that there is only one rejecting state, which we denote by ∅. We will also
assume that all states of M are reachable from the start state, since any states that
were not reachable from the start state could simply be removed. Let S be the set
of accepting states in M; thus the entire set of states is S ∪ {∅}.

If S is some set of objects, and each x ∈ S has a nonnegative integer size s(x),
the generating function for S is the function G(S) that maps z to∑

x∈S

zs(x).

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:10 G. S. LUEKER

Suppose S and S′ are two sets of objects on which a nonnegative size function s
is defined, and let × denote the Cartesian product; extend s to S × S′ by letting
s(x, x ′) = s(x) + s(x ′). It is well known that

G(S × S′) = G(S) · G(S′); (25)

we will use this fact below. Let g�(z) be the generating function for the set of string
pairs P with lcs(P) ≥ �, that is,

g�(z) =
∞∑

n=0

G(n, �)zn. (26)

Let f�(z) be the generating function for the set of lists of � minimal match pairs
that are accepted by M.

Definition 3.2. Say thatM covers �∗ if for every string pair P with lcs(P) = �
there is a list L of � minimal match pairs and a null pair p such that M accepts L ,
and L ‖ p generates P .

THEOREM 3.3 ([DANČı́K 1994; DANČı́K AND PATERSON 1995]). Suppose that
M covers �∗ and let f�(z) be the generating function for the set of lists of minimal
match pairs of length � accepted by M. Suppose that for some real constants z
and K , with

z ∈ (0, k−1) and λ(z) ∈ (0, 1), (27)

for all large enough integers � we have

f�(z) ≤ K (λ(z))�. (28)

Then

γk ≤ 2 log(kz)

log λ(z)
. (29)

PROOF. Let n(z) be the generating function for the set of null pairs. One easily
sees that n(z) converges for z ∈ (0, k−1) (since we can bound the number of null
pairs of size n by the number of string pairs of size n, which is (n + 1)kn). Then by
(25) and the fact that M covers �∗, we have

g�(z) ≤
∞∑

i=�

f�(z)n(z). (30)

Now pick any

y >
2 log(kz)

log λ(z)
; (31)

note that then

y > 0 and λ(z)y < (kz)2. (32)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:11

From (26), (28), and (30), for large � we have

G(2n, �) ≤ g�(z)

z2n

≤
∞∑

i=�

n(z)
K (λ(z))i

z2n

≤ K n(z)(λ(z))�

(1 − λ(z))z2n
.

Now K , n(z), and λ(z) are all constants so using (32) it follows that

G(2n, yn) = O
(

(λ(z))yn

z2n

)
= o

(
(kz)2n

z2n

)
= o(k2n).

Thus, by Theorem 3.1, any y satisfying (31) is an upper bound on γk , so the right-
hand side of (31) is an upper bound on γk .

One can bound the generating function f�(z) as follows. Let q0 be the starting
state of the machine M, and let δ be its transition function; thus if M is in state q
and reads minimal match pair p, it moves to state q ′ = δ(q, p). Let M be the
set of all minimal match pairs. Let f�(z, q) be the generating function for the lists
of � minimal match pairs that are accepted by M assuming it starts in state q, so
f�(z) = f�(z, q0). Then

f0(z, q) =
{

0 if q = ∅
1 if q ∈ S (33)

and for � > 0 we have

f�(z, q) =
∑
p∈M

f�−1(z, δ(q, p))zs(p). (34)

Since M has infinite cardinality, this is not directly amenable to computation, but
we can effectively make M finite by treating some sets of minimal match pairs as
equivalent. For example, Dančı́k [1994] and Dančı́k and Paterson [1995] design a
machine that treats all minimal match pairs of the form

(0+01
1

)
in the same way. More

generally, suppose there exists some finite subset M0 of M and mapping μ from M
to M0 with the property that replacing p by μ(p) in any list L of minimal match
pairs will never cause it to change from being accepted by M to being rejected
by M. Let M̂ be the machine whose transition function δ̂ is defined by

δ̂(q, p) = δ(q, μ(p)).

Then one easily sees that if M covers �∗, M̂ will also cover �∗. Let f̂�(z, q) be the
generating function for the lists of � minimal match pairs that are accepted by M̂
assuming it starts in state q, so as before we have

f̂�(z, q) =
∑
p∈M

f̂�−1(z, δ̂(q, p))zs(p). (35)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:12 G. S. LUEKER

Define

wμ,z(p) =
∑

p′∈μ−1(p)

zs(p′), (36)

that is, wμ,z(p) is the generating function of the set of all minimal match pairs that
map to p under μ. As a concrete example, if μ maps all minimal match pairs of the
form

(0+01
1

)
to

(001
1

)
, as in Dančı́k [1994] and Dančı́k and Paterson [1995], we would

have μ−1
(001

1

) = {(001
1

)
,
(0001

1

)
,
(00001

1

)
, . . . } so wμ,z

(001
1

) = z4+z5+z6+· · · = z4

1−z .

Then, since, for any p ∈ M , M̂ treats all elements of μ−1(p) identically, we have

f̂�(z, q) =
∑
p∈M0

f̂ �−1(z, δ(q, p))wμ,z(p). (37)

Thus, we need only consider a finite summation. Henceforth, we will assume that
we are dealing only with machines like this that effectively have a finite alphabet,
without putting hats on M, δ, and f .

Now let 	f�(z) denote the vector, indexed by the states of M, in which the qth
component is f�(z, q). Define

equal(q, q ′) =
{

1 if q = q ′
0 otherwise.

Then, the recurrence (37) can be expressed as

	f�(z) = Az 	f �−1(z), (38)

where Az is the matrix {aq,q ′ } in which

aq,q ′ =
∑
p∈M0

wμ,z(p) equal(q ′, δ(q, p)).

Thus, as observed in Dančı́k [1994] and Dančı́k and Paterson [1995] finding the
value λ(z) to use in Theorem 3.3 is essentially the problem of finding the largest
eigenvalue of Az , where z can be selected to approximately minimize the value of
the computed bound; they used Mathematica to assist with the calculations.

We conclude this section by briefly describing the machine used in Dančı́k [1994]
and Dančı́k and Paterson [1995] to obtain upper bounds in the case k = 2. They
define a collation of order � to be a sequence of string pairs p1, p2, . . . , p�, p�+1 in
which p1, p2, . . . , p� are match pairs; p�+1 may be any string pair, possibly even
the null pair. It is convenient to view a collation as a pair of strings in which we
have indicated, by noncrossing lines, � matches between characters of the upper and
lower strings; see parts (a) and (b) of Figure 1. A powerful notion called domination
in defined in Dančı́k [1994] and Dančı́k and Paterson [1995] for reducing the
overcounting. Given a collation of order �, define its domination key as follows: Let li
be the total length of the first i match pairs in the collation; then the domination key
is the tuple (l�, l�−1, . . . , l1). (In the terminology used in Dančı́k [1994] and Dančı́k
and Paterson [1995] this would be the reverse of the collation key.) Equivalently,
consider the string pair generated by the collation; let the indices of the matched
characters in the top string be i1, i2, . . . , i� and the indices of the matched characters
in the bottom string be j1, j2, . . . , j�. Then, the domination key is (i� + j�, i�−1 +

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:13

FIG. 1. Collations and domination. Parts (a) and (b) illustrate the collations corresponding to two
different matches in the same pair of strings. Part (c) gives the domination keys for these two collations.
The second key is lexicographically smaller, so the second collation dominates the first.

j�−1, . . . , i1 + j1). One collation dominates another if it has the same order and a
lexicographically smaller domination key. See part (c) of Figure 1.

In order to obtain their bounds, Dančı́k [1994] and Dančı́k and Paterson [1995]
use a machine M that rejects only when it can determine that the match pairs read
so far could not be the ending of an undominated collation. (Actually, their machine
reads the list of minimal match pairs from right to left, instead of left to right as
in this paper, but this does not affect our analysis.) Clearly, every string pair P
has an undominated collation of order � = lcs(P), and they note that each of the
first � string pairs in this collation is minimal. Thus, it follows that M covers �∗,
so Theorem 3.3 can be used to give bounds on γk . For the case of a binary alphabet
(i.e., k = 2), using a carefully constructed 52-state automaton they obtain a value
of λ(z0) = 0.195960 for z0 = 0.252652, and then by Theorem 3.3 obtain the
bound γ2 ≤ 0.837623. They comment

“We have not automated the process of refinement and development of
new recurrences, but further extensions could easily be found and the
computation time required is not yet a limitation. . . . It is an open ques-
tion whether the method itself can give arbitrarily close approximations
to γ .” [Dančı́k and Paterson 1995, p. 456]

In the next section, we describe an enhancement of their method that can be shown to
produce upper bounds arbitrarily close to γk for arbitrary k, though the computation
time to guarantee better bounds increases rapidly.

3.2. CANONICAL LONGEST COMMON SUBSEQUENCES. The modification used
in this article is based on the well-known dynamic programming approach (see,
e.g., Pevzner [2000, Section 6.2]) for computing longest common subsequences:
Given a string pair

(a1a2···an
b1b2···bm

)
we let lcs[i, j] be the length of a longest common

subsequence of a1a2 · · · ai and b1b2 · · · b j and note that for positive i and j we have
the recurrence

lcs[i, j] = max

{ lcs[i − 1, j]
lcs[i, j − 1]
lcs[i − 1, j − 1] + 1 (include only if ai = b j).

(39)

This computation is shown for the strings 011010 and 1010101 in part (a) of
Figure 2.

It is well known that we can recover a longest common subsequence by backtrack-
ing through the table; when there is more than one longest common subsequence,

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:14 G. S. LUEKER

FIG. 2. Illustration of the well-known dynamic programming solution for the longest common sub-
sequence problem, the definition of the canonical longest common subsequence, and the definition of
a canonical decomposition. In part (a), the top two rows give the indices j and the characters b j , and
the left two columns give the indices i and the characters ai . (When drawing dynamic programming
tables for a string pair P , we always show the top string of P along the left edge of the table and the
bottom string of P along the top edge.) The remaining entries give the lcs values computed during
the dynamic programming solution; the entry indexed by i and j is the length of the lcs of a1a2 · · · ai
and b1b2 · · · b j . The unique canonical lcs for a1a2 · · · a6 and b1b2 · · · b7 is 01101, corresponding to
the backtracking path shown in the diagram. Thus, the canonical decomposition for these two strings
is as shown in part (c).

the order in which we consider the options as we backtrack determines the particular
longest common subsequence we find. We define the canonical longest common
subsequence to be the one we obtain by considering options in the order in which
they appear in (39), that is,

(1) if lcs[i, j] = lcs[i − 1, j] move up from (i, j) to (i − 1, j),
(2) else if lcs[i, j] = lcs[i, j − 1] move left from (i, j) to (i, j − 1),
(3) else move diagonally up and to the left from (i, j) to (i − 1, j − 1). In this case

it must be that lcs[i − 1, j − 1] = lcs[i − 1, j] = lcs[i, j − 1] = lcs[i, j] − 1,
so ai = b j . We match these two characters.

Define the canonical path to be the sequence of entries in the lcs table followed by
the canonical backtracking, and the canonical decomposition of a string pair to be
the list of string pairs we obtain by cutting after each match in the canonical lcs.
These definitions are illustrated in Figure 2.

Since the rules above completely determine the path along which we backtrack
to find a longest common subsequence, one easily sees the following.

LEMMA 3.4. Any pair of strings has exactly one canonical longest common
subsequence and exactly one canonical decomposition.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:15

This notion of canonicity is very closely related to the notion of domination used
in Dančı́k [1994] and Dančı́k and Paterson [1995]. Define the canonicity key of a
matching as follows: Assuming that the longest common subsequence has length �,
let the indices of the matched characters in the top string be i1, i2, . . . , i� and the
indices of the matched characters in the bottom string be j1, j2, . . . , j�; then the
canonicity key is (i�, j�, i�−1, j�−1, . . . , i1, j1). The canonical matching is the one
that gives a longest common sequence and whose canonicity key is lexicograph-
ically smallest. For example, the first collation shown in Figure 1 has canonicity
key (5, 5, 3, 4, 2, 3, 1, 2) and the second has canonicity key (5, 4, 4, 3, 3, 2, 2, 1).
Thus, the first list of match pairs is not canonical.

Canonicity has a property similar to one shown in Dančı́k [1994] and Dančı́k
and Paterson [1995] for undominated collations:

LEMMA 3.5. If
(x

y

)
has lcs

(x
y

) = �, then the canonical decomposition of
(x

y

)
consists of � or � + 1 string pairs, of which the first � are minimal match pairs and
the (� + 1)st, if present, is a null pair.

PROOF. Since the longest common subsequence has length �, and the canonical
decomposition cuts the string after each match, the number of string pairs in the
decomposition must be � + 1 or �, depending on whether or not any characters
follow the final match.

Next let p = (x ′
y′
)

be any of the first � string pairs in the decomposition. Note that
by construction the last character of x ′ must be the same as the last character of y′,
so p is a match pair. If p had lcs(p) > 1, we could find a common subsequence in

(x
y

)
longer than �. If p had lcs(p) = 1 but did not end on an essential match, we could
find a decomposition with a smaller canonicity key. Thus, p is a minimal match pair.

If the canonical decomposition consists of � + 1 match pairs, the last must be
a null pair since otherwise the lcs of

(x
y

)
would be greater than �.

Definition 3.6. A list L of minimal match pairs is canonical if the canonical
decomposition of cat(L) is L itself.

Ideally, we would like to use a machine that accepts only canonical lists of min-
imal match pairs. To see that such a machine would cover �, let P be any pair of
strings with a longest common subsequence of length �. Form the canonical decom-
position of P . Then, by Lemma 3.5, the list formed by the first � pairs of P must be
a list of minimal match pairs; by construction it is canonical. Also, the (�+1)st pair,
if present, must be a null pair; if it is not present, we can simply append the pair

(
ε

ε

)
to meet the conditions of Definition 3.2. Thus, this ideal machine would cover �∗.

Of course, for our calculations, we will want a machine that has a finite input
alphabet, and only finitely many states, so we will not try to implement the ideal
machine perfectly. Rather, we will have a history parameter h controlling how much
the machine remembers in its finite state memory, and call the memory-limited
machine Mh .

The machine we construct will be allowed to accept match pair lists that are not
canonical, but will never reject a canonical list of match pairs; thus it will still have
the property that it covers �∗ as required for Theorem 3.3. As in Section 3.1, we
will make the set of match pairs we allow as input finite by using a function μ to
map M to a finite subset M0. For q ∈ S, if the top or bottom string of p is longer
than h, μ(p) removes characters on the left until only h remain. The contrapositive

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:16 G. S. LUEKER

of the following lemma implies that these deletions of characters will never change
a canonical list of match pairs to one that is not canonical.

LEMMA 3.7. If a given list L = p1, p2, . . . , p� of minimal match pairs is not
canonical, then no list of minimal match pairs that can be obtained by inserting
additional padding characters before the matched characters of any of the pi can
be canonical.

PROOF. Let
(a1a2···an

b1b2···bm

)
be the string pair generated by L . For expressing and

visualizing the proof without a lot of cumbersome notation, it is convenient to give
an alternate way of viewing the definition of canonical. Assume that each character
is at some coordinate on the real line. In particular, assume the i th character of
a1a2 · · · an is at xi , and the j th character of b1b2 · · · bm is at y j . Choose some
assignment of coordinates such that

(1) For 1 ≤ i ≤ �, the coordinate of both of the matched characters in pi is i , and
(2) We have x1 < x2 < · · · < xn and y1 < y2 < · · · < ym , so the ordering of

the indices of the characters is the same as the ordering of the coordinates
assigned to the characters.

See Figure 3. Given such an assignment of coordinates to characters, and any
particular matching, we define its real canonicity key as follows: Let the indices
of the matched characters in the top string be i1, i2, . . . , i� and the indices of the
matched characters in the bottom string be j1, j2, . . . , j�; then the real canonicity
key is (x�, y�, x�−1, y�−1, . . . , x1, y1). From (2) above, the lexicographic ordering
of these real canonicity keys is the same as the lexicographic order of the original
canonicity keys. Thus, in view of part (1) above, this means that L is canonical if
and only if there is no match of length � whose real canonicity key is lexicograph-
ically smaller than (�, �, � − 1, � − 1, . . . , 1, 1); see parts (a) and (b) of the figure.
Now suppose that L is not canonical, so there is a match with a lexicographically
smaller key K . Suppose we form a new list L ′ by inserting additional padding
characters, without changing the real coordinates of any of the original characters,
as illustrated in part (c) of the figure. Then, K is still the real canonicity key of
a matching of length � in L ′, and is of course still lexicographically smaller than
(�, �, � − 1, � − 1, . . . , 1, 1), so L ′ is not canonical.

In what follows, we first give some intuition for how the transition function δ
of Mh is defined and computed, then give two concrete examples, and finally give
pseudo-code for the general case. Mh will remember only the last h characters in
the top and bottom of the string pair generated by the list of match pairs read so
far, and the last h + 1 entries in the rightmost column and in the bottom row of
the lcs table. Thus, with � = {0, 1} and h = 3, we might at some point remember
the information shown in part (a) of Figure 4; assume we are in an accepting
state. Now suppose we input the match pair

(0
110

)
, to obtain part (b) of the figure.

Unfortunately we do not have enough information to fill in the new entries in the
lcs table. Instead, we will allow the entries we add to the table to be lower bounds
on the correct value, with the constraint that if the input is canonical they must be
tight along the canonical path. For those entries where some of the values needed
in recurrence (39) are unknown (denoted by “?”), we compute a lower bound by
using only the cases in (39) for which the correct value is known. This leads us to
part (c) of the figure. Now we have lower bounds on all values needed to use (39)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:17

FIG. 3. Illustration for the proof of Lemma 3.7.

to fill in lower bounds for the rest of the table and obtain part (d). We then check
whether the canonical backtracking starting at the bottom right entry in this figure
leads us to the bottom right entry of the original state shown in part (a) of the
figure. If not, we reject. Note that if the input is canonical the lcs will increase by
exactly one when we add the new match pair

(0
110

)
, so we are guaranteed that the

lower bounds appearing along the canonical path in the table will be tight. Thus
the canonical backtracking will lead us to reject only if the input is not canonical.

Unfortunately, this would still not lead to a finite set of states since the values
in the lcs table increase without bound as we read more match pairs. However,
it is clear that the acceptance test will not be affected if we translate all values
in the table by the same amount, so we only need to remember the differences
among the last h + 1 entries in the bottom row and in the rightmost column of the
table. These differences are shown in a smaller font in part (d) of Figure 4. Thus,
we let the accepting states of the machine be of the form (x, y, dx, dy), where x
(respectively, y) records the last h characters of the top (respectively, bottom) input
string, and dx (respectively, dy) records the last h differences in the last column
(respectively, row) of the lcs table. Note that x and y are strings in �h and dx

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:18 G. S. LUEKER

FIG. 4. Motivation for the transition function of Mh . Here the string pair being read is
(0

110

)
.

and dy are bit strings in {0, 1}h . In particular, the state corresponding to part (d)
of Figure 4 would be (100, 110, 011, 001). There is also one rejecting state ∅.

Figures 5 and 6 give two complete examples of the computation of δ. (If x is
a binary string, let x̄ be the string obtained by complementing all characters in
x . Much as in Dančı́k [1994] and Dančı́k and Paterson [1995, p. 451], we took
advantage of the fact that f�(z, (x, y, dx, dy)) = f�(z, (x̄, ȳ, dx, dy)); we could
not however conclude that f�(z, (x, y, dx, dy)) = f�(z, (y, x, dy, dx)), since the
rules for canonical backtracking break this symmetry.)

We can now precisely state how to compute δ(q, p) in general. If q is the
rejecting state ∅, we simply let δ(q, p) = ∅. Otherwise, we let δ(q, p) be the result
of calling the procedure delta shown in Figure 7. (We use a syntax loosely based
on that of the Python programming language; however, we assume that strings are
indexed beginning at 1 rather than at 0, for consistency with the rest of this article.)

Lines 7–13 of this procedure fill in the new portion of the lcs table using (39);
whenever the machine cannot reconstruct the value stored in a needed lcs entry from
the state, it uses a lower bound corresponding to one of the first two cases in (39).

At first, it might seem that it would be necessary to have some transient states
in which there are fewer than h characters or differences, but a simple observation
allows us to avoid this.

LEMMA 3.8. Let
(x1

y1

)(x2

y2

) · · · (x�

y�

)
be an arbitrary list of minimal match pairs.

Then for any c ∈ �, the list
(x1

y1

)(x2

y2

) · · · (x�

y�

)
is canonical if and only if the list(c

c

)(x1

y1

)(x2

y2

) · · · (x�

y�

)
is canonical.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:19

FIG. 5. Illustration of δ
(〈000, 100, 111, 001〉, (01

1

)) = 〈001, 001, 101, 001〉. The initial state
〈000, 100, 111, 001〉 is shown by the bold numbers in the table: The last three characters of the
first and second string are 000 and 100, the differences of the column of bold entries in the lcs table
are 111, and the differences of the row of bold entries in the lcs table are 001. (Values left unspecified
by the initial state are shown as “?”.) After appending 01 to the first string and 1 to the second, and
filling in the lcs table, we obtain the table shown. Now the last three characters of the first and second
string are 001 and 001, the last three differences in the right column of the lcs table are 101, and last
three differences in the bottom row of the lcs table are 001; thus the new state is 〈001, 001, 101, 001〉.

FIG. 6. Illustration of δ
(〈000, 100, 111, 001〉, (001

1

)) = ∅. The initial state is the same as in the

previous figure. Appending
(001

1

)
yields the table shown. This time, however, when we canonically

backtrack through the table we do not reach the bottom right entry in the lcs table corresponding to
the original state, so the resulting state is ∅.

PROOF SKETCH. One easily sees that if two strings begin with the same character,
then the lexicographically smallest matching giving a longest common subsequence
must pair the first two characters, from which the lemma follows easily.

By Lemma 3.8, we see that reading in h match pairs
(0

0

)
before reading the actual

input will not have any effect on which lists of match pairs are accepted, so we can
take our initial state from the lcs table for

(0h

0h

)
, and thus let the start state be q0 =

(x, y, dx, dy), where x and y are the string 0h and dx and dy are the bit string 1h .
For a given z, the corresponding value of λ(z) to use in Theorem 3.3 was found

as follows. Iterate the recurrence (37) until the ratio

f�(z, q)/ f�−1(z, q) (40)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:20 G. S. LUEKER

1. def delta(q, p):
2. (x, y, dx, dy) = q
3. lcs[h, h] = h
4. decodeVertDiffs((h, h), dx); decodeHorzDiffs((h, h), dy)
5. (a, b) = μ(p)
6. a = x + a; b = y + b
7. for i = 0 to len(a): # fill in the new lcs table entries
8. for j = 0 to len(b):
9. if i > h or j > h:

10. if i == 0: lcs[i, j] = lcs[i, j − 1]
11. else if j == 0: lcs[i, j] = lcs[i − 1, j]
12. else if ai == b j : lcs[i, j] = lcs[i − 1, j − 1] + 1
13. else: lcs[i, j] = max(lcs[i, j − 1], lcs[i − 1, j])
14. (i, j) = (len(a), len(b)) # now perform the canonicity test
15. while i ≥ h and j ≥ h:
16. if lcs[i, j] == lcs[i − 1, j]: i = i − 1 # try moving up
17. else if lcs[i, j] == lcs[i, j − 1]: j = j − 1 # try moving left
18. else: i = i − 1; j = j − 1 # make a match
19. if i == h and j == h: # canonicity test succeeds
20. last = (len(a), len(b))
21. return (suffix(a), suffix(b), encodeVertDiffs(last), encodeHorzDiffs(last))
22. return ∅ # canonicity test fails

The following functions are used:

—μ(p) removes characters from the left of the upper and lower strings of p as needed to restrict each to length h.
—len(a) returns the length of the string a.
—suffix(a) returns the string consisting of the last h characters of a.
—encodeVertDiffs((i, j)) returns a bit vector of length h whose successive entries are the successive differences

between the table entries lcs[i − h, j], lcs[i − h + 1, j], lcs[i − h + 2, j], . . . , lcs[i, j].
—encodeHorzDiffs((i, j)) performs the operation analogous to encodeVertDiffs, but for horizontal differences. It

returns a bit vector of length h whose successive entries are the successive differences between the table entries
lcs[i, j − h], lcs[i, j − h + 1], lcs[i, j − h + 2], . . . , lcs[i, j].

—decodeVertDiffs((i, j), dx) performs an operation inverse to encodeVertDiffs; it makes the successive differ-
ences of the table entries lcs[i − h, j], lcs[i − h + 1, j], lcs[i − h + 2, j], . . . , lcs[i, j] be the successive bits
in the bit string dx , leaving lcs[i, j] unchanged.

—decodeHorzDiffs((i, j), dy) performs the operation analogous to decodeVertDiffs, but for horizontal differences.

The operator +, when applied to strings, denotes string concatenation.

FIG. 7. The transition function δ(q, p) for the machine Mh .

is nearly independent of q. (In Section 3.3, we will show that in fact all of these ratios
approach the same value for the finite state machines we use.) Let the largest of these
ratios be λ. A simple induction shows that then (28) will hold for some K if we let
λ(z) = λ; in fact, in the notation of (38), since all entries in Az are nonnegative, sim-
ply exhibiting any particular z ∈ (0, 1/K), λ ∈ (0, 1), and positive vector 	v such that

Az	v ≤ λ	v, (41)

where the inequalities are to be interpreted component-wise, is sufficient to support
the claim that (29) holds with λ(z) = λ.

3.2.1. The Values of the Upper Bounds for k = 2. The results of this calculation
are shown in Table II. The values of z shown are chosen to yield good bounds,
and the values of λ(z) shown are numerical approximations. The next section
outlines the argument that the bounds shown for γ are truly upper bounds, despite

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:21

TABLE II. UPPER BOUNDS

h Number of accepting states z λ(z) Upper bound on γ

2 7 0.2118 0.131204211 0.845855
3 98 0.2422 0.177752610 0.839250
4 1020 0.2642 0.217017510 0.835072
5 10160 0.2828 0.254100606 0.831910
6 89960 0.2980 0.287155609 0.829530
7 780368 0.3104 0.316022744 0.827727
8 6419109 0.3209 0.341832259 0.826280

All values are for a binary alphabet. Parameter h controls the size of the computation.

the possibility of numerical error in the computation, provided we assume that
the basic floating point operations perform as expected. Note that for h = 4 the
method already improves the previously known upper bound, and that for h = 7
or 8 the bound is less than the γ given by Steele’s old conjecture (see [Steele
1997, page 3]) that γ = 2/(1 + √

2) ≈ 0.828427. (As Steele [1997] pointed out,
experimental evidence already suggested that this conjectured value was too high.)
Put another way, this shows that the Arratia-Steele conjecture (see Pevzner [2000,
Section 6.8, page 107]) fails even for alphabet size 2.

3.2.2. Numerical Issues. The actual computations leading to the upper bound
on γ involve an iterative process and millions of floating-point operations. Thus
it is appropriate to ask the extent to which rounding error casts doubt on the final
results. In this section, we sketch the argument that shows that the exact bound
of γ ≤ 826280/1000000 is justified, despite the possibility of numerical errors
in our intermediate calculations, assuming that floating point arithmetic satisfies
reasonable assumptions.

We will bound the error in the computation of the expression 2 log(2z)/ log λ(z)
appearing in Theorem 3.3 in two steps: First, we estimate the accuracy of our
computation of λ(z), and then we estimate the accuracy of the bound computed
using this λ(z).

As remarked earlier, any z ∈ (0, 1/k), λ ∈ (0, 1), and positive vector 	v
satisfying (41) serve as a witness that we can apply Theorem 3.3 with λ(z) = λ,
so we merely need to check that these inequalities hold. For the largest problem
we consider there are N = 6419109 accepting states, so methods involving the
computation of high powers of the N × N array Az could place excessive demands
on memory. Instead we start with the N -dimensional vector (1, 1, 1, . . . , 1) (see
(33)) and iteratively multiply by Az until we find that all components of the vector
are increasing by approximately the same ratio between two successive iterations.
Then, this serves as the vector 	v to use in (41).

Verification that (41) holds is simplified by the fact that, aside from the computa-
tion of 1−z during the calculation of wμ,z(p), all expressions involve only addition,
multiplication, and division of nonnegative numbers. Because of this, we can use
rather crude bounds to justify the conclusion that γ ≤ 826280/1000000. We take
the numerical values of z and 	v as computed by the program to be the exact values for
the witness in (41), so they have no roundoff error. We then let λ(z) be the maximum
factor by which any component of Az	v exceeds the corresponding component of 	v .
Because of roundoff error, the program computes only an approximation λ to λ(z).

When we performed the actual calculations for this article, we used a Java pro-
gram with double precision numbers. Assuming that the Java implementation

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:22 G. S. LUEKER

used conforms to the specification given in Gosling et al. [2005, Sections 4.2.3
and 4.2.4], we know that the value set used for a double includes all possible
numeric values for IEEE 754 doubles, and that round-to-nearest mode is used for
floating point addition, subtraction, multiplication, and division. Thus, as long as
the true result r of any of these operations lies within the normalized range of dou-
ble precision, if we assume exact operands we can assume, using Overton [2001,
Table 4.4 and Theorem 5.1], that the computed result r̂ satisfies r̂ = r (1 + δ) for
some δ ∈ [−2−53, 2−53], from which it follows that r̂/r ∈ (1/(1+2−52), 1+2−52).
For the remainder of this section we let

ρ = 1 + 2−52, (42)

and assume that we are dealing with numbers that lie within the normalized range
of double precision.

Suppose that double precision numbers x̂ and ŷ represent positive real numbers x
and y with the error bounds

ρ−i x ≤ x̂ − x ≤ ρi x

and

ρ− j y ≤ ŷ − y ≤ ρ j y.

Then, if we let s = x + y, p = xy, and q = x/y, and let ŝ, p̂, and q̂ represent
the results of the corresponding double precision operations on x̂ and ŷ with
round-to-nearest, we can conclude that

ρ−(max(i, j)+1)s ≤ ŝ − s ≤ ρmax(i, j)+1s, (43)

ρ−(i+ j+1) p ≤ p̂ − p ≤ ρi+ j+1 p, (44)

and

ρ−(i+ j+1)q ≤ q̂ − q ≤ ρi+ j+1q. (45)

Now the approximation to 1 − z used in the program is accurate to within a
factor of ρ, and then inspection of the program2 and repeated use of (43), (44),
and (45) establishes that the computed value λ satisfies

λ(z)ρ−100 ≤ λ − λ(z) ≤ λ(z)ρ100. (46)

Finally, we need to show that

2 log(2z)

log λ(z)
≤ p/q, (47)

where p = 826280 and q = 1000000. To show this, we establish that

log(2z)

log λ(z)
≤ p/(2q),

2 Code to produce the bounds reported in this paper has been placed on the web at
http://www.ics.uci.edu/∼lueker/papers/lcs/code

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:23

which, since λ(z) < 1, is equivalent to

(2z)2q ≥ (λ(z))p.

Let

R = (2z)2q

(λ(z))p
, (48)

so we need to show R ≥ 1. We calculate a numerical approximation R̂ to R,
based on z and λ, by a routine involving repeated multiplication and division,
being careful to interleave the multiplications and divisions so that we stay well
within the normalized range of double precision. Again using (43), (44), and (45),
starting with (46), we can compute a value eR such that

R ≥ R̂ρ−eR ,

where it can be verified that

eR ≤ 227. (49)

Then to establish that R ≥ 1 and hence that (47) holds, it is sufficient to verify that

R̂ ≥ ρeR .

We can bound the right hand side of this by

ρeR ≤ eeR log ρ ≤ eeR/252 ≤ 1 + eR/251 ≤ 1 + 2−24,

where we have used (49) and the fact that for x ≤ 1/2 we have ex ≤ 1 + 2x . Thus
it suffices to show that

R̂ − 1 ≥ 2−24,

which the program verifies. (In fact, for the values used in the program it turns out
that R̂ − 1 ≈ 1.4, so double precision provides far more accuracy than needed.)

3.3. CONVERGENCE. We now investigate some convergence properties of the
methods described in this paper. First, we show a sufficient condition for the ratios
in (40) to approach a limit independent of q. Then, we show a sufficient condition
for the bounds obtained from Theorem 3.3 to converge to the true value of γk
as the history parameter h becomes large. Finally, we show that the method of
Section 3.2 meets both of these conditions.

Definition 3.9. M is regular3 if it has the following two properties:

(1) for every q ∈ S the start state is reachable from q, and
(2) there exists some state q ∈ S and some minimal match pair p ∈ M , such that

if M is in state q and reads p, it remains in state q.

Now standard arguments show that if M is regular we have a convergence
property.

3This is closely related to the definition of regular used for computing lower bounds in Dančı́k [1994,
Definition 3.5].

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:24 G. S. LUEKER

THEOREM 3.10. If M is regular, then for each constant z ∈ (0, k−1) there
exists λ > 0, 0 ≤ ρ < 1, and a vector 	v (indexed by states in S), with all
components positive, such that

f�(z, q) = λ�v(q) + O(ρ�λ�). (50)

PROOF. Since M is regular the matrix A is irreducible and aperiodic; thus, by
Seneta [1981, Theorem 1.4] it is primitive,4 so by the Perron-Frobenius Theorem
for primitive matrices [Seneta 1981, Theorem 1.1] (see also MacCluer [2000]), it
has a positive real eigenvalue λ of (algebraic and geometric) multiplicity one with
a corresponding eigenvector in which all components are positive, and all other
eigenvalues are smaller in magnitude than λ. The conclusion follows immediately.
(See also Seneta [1981, Theorem 1.2].)

COROLLARY 3.11. If M is regular, then for each positive z there exists a λ
such that for all q ∈ S,

lim
�→∞

f�(z, q)

f�−1(z, q)
= λ.

Next we consider whether the upper bounds on γk converge to the true value as
h becomes large. We note that it is not surprising that some sequence bh of upper
bounds on γk , where the time to compute bh increases with h, can be shown to
converge to γk . Alexander [1994] showed how to compute explicit values of n0
and C such that

n ≥ n0 =⇒ γkn ≥ E [Lnn] ≥ γkn − C
√

n log n.

Hence, for large n

γk ≤ E [Lnn] /n + C
√

n−1 log n. (51)

In Alexander [1994] results from simulations with random numbers were used to
estimate the expected lcs length and give bounds that held with 95% confidence, but
in principle one could simply evaluate E[Lnn] for successive values of n by exhaus-
tive enumeration to obtain from (51) a sequence of bounds guaranteed to converge
to γk . Although this would give an error bound that converges more rapidly than the
bound proven below in Theorem 3.13, it is of interest to investigate the convergence
of the methods that have actually been used to produce the best bounds.

We now describe a sufficient condition for a sequence Mh , h = 1, 2, . . . , of
machines to produce bounds that approach the true value of γk .

Definition 3.12. Say a sequence Mh , h = 1, 2, . . . , of machines efficiently
covers �∗ if it covers �∗ and additionally has the following two properties:

(1) For any two lists L and L ′ of minimal match pairs, if M accepts L ‖ L ′ then
it also accepts L and L ′.

(2) There exists no string pair P of size bounded by h such that two distinct
lists L and L ′ of minimal match pairs, each of which is accepted by Mh , both
generate P .

4A square matrix A with no negative entries is primitive if for some positive integer � all entries in A�

are positive [Seneta 1981, p. 3].

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:25

The next section proves the following.

THEOREM 3.13. Suppose that the sequence Mh, h = 1, 2, . . . , efficiently
covers �∗, and that each machine in the sequence is regular. Then as h → ∞ the
sequence of upper bounds on γk produced by Mh approaches γk . In particular,
the upper bound produced by Mh is bounded by

γk + O

((
log h

h

)1/3
)

,

where the hidden constants are allowed to depend on k.

3.3.1. Proof of Theorem 3.13. Throughout this section, we assume that the
conditions of Theorem 3.13 hold and that we are dealing with a fixed alphabet
� = {0, 1, . . . , k − 1}, where k ≥ 2. Dependence on k will not always be made
explicit; in particular we will allow hidden constants in asymptotic notation to
depend on k, and will simply use γ instead of γk .

Define F(n, �, h) to be the number of lists, with length � and size n, of minimal
match pairs that are accepted by Mh , and let f�,h(z) denote the corresponding
generating function, that is,

f�,h(z) =
∞∑

n=0

F(n, �, h)zn. (52)

Since this is the most complicated proof in the article, we begin by giving a
very rough sketch of the proof. To get arbitrarily close bounds from Theorem 3.3
we will need to show that

f�,h(z) ≤ K (λ(z))�

for some λ(z) close to (kz)2/γ . Although we are interested in the behavior of f�,h
when � � h, we first analyze the behavior for h substantially larger than �, and
then show how to use this to obtain bounds for � � h; a similar approach was used
in Kiwi et al. [2005]. For n of size up to roughly 2�/γ , we use part (2) of Defini-
tion 3.12 to bound F(n, �, h) by the number G(n, �) of string pairs of size n with an
lcs length of at least �. Since this is roughly comparable to kn when n is near 2�/γ ,
the contribution to the sum on the right of (52) when n is near 2�/γ is very roughly
(kz)2�/γ , as desired. For n significantly smaller than 2�/γ , we use a concentration
inequality to show that the contribution to the sum is small, since it corresponds to
strings having an lcs much longer than expected. Finally, for n significantly larger
than �, we use the fact that F(n, �, h) is substantially lower than kn (since many
characters can be chosen from only k − 1 rather than k choices), to show that
the contribution to the sum is again small. We then use a subadditivity result that
follows from part (1) of Definition 3.12 to extend the bound to the range � � h.

We now give the detailed proof. It is well known [Chvátal and Sankoff 1975]
that by superadditivity we have E [Lnn] ≤ γ n, from which it follows readily that

E[Li j] ≤ 1

2
γ (i + j). (53)

We have

Pr{|Li j − E[Li j]| ≥ t} ≤ 2e−t2/(2(i+ j)) (54)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:26 G. S. LUEKER

by a standard application of Azuma’s inequality and the method of bounded differ-
ences; see Alexander [1994] and Steele [1997, Section 1.3] for proofs of deviation
bounds for the lcs by this method. (See Janson et al. [2000, Section 2.4] for a
discussion of martingales and Azuma’s inequality; one could prove a somewhat
stronger bound than (54) using the bounds they present (e.g., Remark 2.28), but that
is not necessary for our main results.) Recall that G(n, �) is the number of string
pairs of size n having an lcs length of at least �. Considering the various possibilities
for the lengths of the top and bottom strings, and using (53) and (54), we have

G(n, �) ≤
n∑

i=0

kn Pr{Li,n−i ≥ �}

=
n∑

i=0

kn Pr{Li,n−i − E[Li,n−i] ≥ � − E[Li,n−i]}

≤
n∑

i=0

kn Pr{Li,n−i − E[Li,n−i] ≥ � − γ n/2}

≤ 2(n + 1)kne−(�−γ n/2)2/(2n). (55)

LEMMA 3.14. There exists an integer constant c ≥ 2, depending only on k,
such that the following holds. Choose any positive integer � and real x so that

x ∈ [0, �/γ], (56)

and

n0 = 2�/γ − x (57)

is a positive integer. Then for any real z with

z ∈ (0, k−1) (58)

and integer h with

h ≥ c � (59)

we have

f�,h(z) =
∞∑

n=0

F(n, �, h)zn ≤ 2n2
0e−γ 3x2/(16�) + n0 + 1

(1 − kz)2
(kz)n0 + 4k/2�. (60)

PROOF. From (56) and (57), we have

n0 ≥ �/γ. (61)

Note that any list of � minimal match pairs maps (under cat) to a string pair with
lcs length at least �; moreover, by (59) and part (2) of Definition 3.12 we know
that this map is one-to-one if we restrict the domain to minimal match pair lists of
size at most c � that are accepted by Mh . Thus, we have

n ≤ c � =⇒ F(n, �, h) ≤ G(n, �). (62)

We estimate the summation in (60) by dividing the range of summation into
three intervals, namely, 0 ≤ n < n0, n0 ≤ n < c � and c � ≤ n. (Note that (57)
guarantees that if we pick c large enough we will have n0 ≤ c �.)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:27

Now using (62) and then (55) gives

n0−1∑
n=0

F(n, �, h)zn ≤
n0−1∑
n=0

G(n, �)zn

≤
n0−1∑
n=0

2(n + 1) kn e−(�−γ n/2)2/(2n)zn. (63)

When n < n0 = 2�/γ − x we have γ n/2 < � − γ x/2 so

(� − γ n/2)2

2n
≥ (γ x/2)2

2 · 2�/γ
= γ 3x2

16�
, (64)

so using (63) and then (58) we have

n0−1∑
n=0

F(n, �, h)zn ≤ 2e−γ 3x2/(16�)
n0−1∑
n=0

(n + 1)(kz)n

≤ 2e−γ 3x2/(16�)
n0−1∑
n=0

(n + 1)

= n0(n0 + 1)e−γ 3x2/(16�)

≤ 2n2
0e−γ 3x2/(16�), (65)

where in the last step we used the fact that n0 is a positive integer.
For the range n0 ≤ n < c � we note that, from (62), F(n, �, h) is certainly

bounded by the number of string pairs of size n, i.e., (n + 1)kn , so

c �−1∑
n=n0

F(n, �, h)zn ≤
c �−1∑
n=n0

(n + 1)(kz)n

≤
∞∑

n=n0

(n + 1)(kz)n

= n0 + 1 − kzn0

(1 − kz)2
(kz)n0

≤ n0 + 1

(1 − kz)2
(kz)n0 . (66)

Finally, for the range n ≥ c � we cannot use the bound in (62), so we
will bound F(n, �, h) by the total number of sequences of � minimal match
pairs of size n; this number is bounded by

(n
2�

)
(for choosing which of the n

characters to match) times k� (for choosing the values of the matched characters)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:28 G. S. LUEKER

times (k − 1)n−2� (for choosing the values of the padding characters), to obtain

∞∑
n=c �

F(n, �, h)zn ≤
∞∑

n=c �

(
n
2�

)
k�(k − 1)n−2�zn

≤
∞∑

n=c �

(ne
2�

)2�

(k − 1)n−2�k�k−n

=
∞∑

n=c �

(ne
2�

)2�
(

1

k − 1

)� (
k − 1

k

)n−�

where in the penultimate step we have used (58) and Motwani and Rahgavan
[1995, Proposition B.2 part 3]. The ratio of successive terms in the sum on the
right is bounded by(

1 + 1

c �

)2� k − 1

k
≤ (e1/(c �))2�e−1/k = exp

(
2

c
− 1

k

)
≤ exp

(
− 1

3k

)
(67)

provided we pick c ≥ 3k. Thus using the fact that e−1/(3k) ≤ 1 − 1/(4k) for k ≥ 2
we have

∞∑
n=c �

F(n, �, h)zn ≤ 1

1 − e−1/(3k)

(
ec �

2�

)2� (
1

k − 1

)� (
k − 1

k

)c �−�

≤ 4k
(ec

2

)2�
(

1

k − 1

)� (
k − 1

k

)c �−�

= 4k

(
e2c2

4(k − 1)

(
k − 1

k

)c−1
)�

≤ 4k/2�, (68)

where the last step holds providing that we pick c large enough (depending only
on k) so that

e2c2

4(k − 1)

(
k − 1

k

)c−1

≤ 1

2
.

Combining (65), (66), and (68) gives (60).

For the remainder of this section we let c denote the constant whose existence
is guaranteed by Lemma 3.14. We now further constrain the parameter z to
appropriately balance the terms on the right of (60) and then refine the estimate.

LEMMA 3.15. Let h and z vary with � so that

h ≥ c � (69)

and for some positive constant c′ (depending only on k), we have

−
(

log �

�

)2/3

≤ log(kz) ≤ −c′
(

log �

�

)2/3

. (70)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:29

Then, as � approaches ∞, we have

log f�,h(z) ≤ 2�

γ
log(kz) + O(log �). (71)

PROOF. Note that (70) implies 1 − kz = �(�−1). Choose x so that

0 ≤ x − 6 k2 �2/3 log1/3 � ≤ 1 (72)

and

n0 = 2�/γ − x

is a positive integer. Note that then from (70) we have (kz)x = �O(1). Then, for
large �, the conditions of Lemma 3.14 apply so

f�,h(z) ≤ 2n2
0e−γ 3x2/(16�) + n0 + 1

(1 − kz)2
(kz)n0 + 4k/2�

= O(�2)e−36k4γ 3�4/3 log2/3 �/(16�) + O(�3)(kz)2�/γ−x + 4k/2�

= O(�2)e−(9/4)k4γ 3�1/3 log2/3 � + �O(1)(kz)2�/γ + 4k/2�. (73)

The log of the first term on the right of (73) is asymptotic to − 9
4 k4γ 3 �1/3 log2/3 �

while (from (70)) the log of the second term is bounded below by

−2�

γ

(
log �

�

)2/3

+ O(log �) ∼ − 2

γ
�1/3 log2/3 �,

so one easily sees (using the naive bound γ ≥ k−1) that the middle term on the
right of (73) dominates the other two terms for large �. Hence

f�,h(z) ≤ �O(1)(kz)2�/γ (74)

and thus (71) holds.

A direct application of Lemma 3.15 will not suffice for our needs, since to apply
Theorem 3.3 we want to bound the behavior of f�,h for fixed h as � → ∞. The fact
that Mh satisfies part (1) of Definition 3.12 will imply a subadditivity property
of log f�,h that can be used to overcome this problem. (Subadditivity of a related
generating function was used in the classic paper [Alexander 1994].)

LEMMA 3.16. log f�+�′,h(z) ≤ log f�,h(z) + log f�′,h(z).

PROOF. Consider any two sequences p1, p2, . . . , p� and p′
1, p′

2, . . . , p′
�′ of

minimal match pairs. From part (1) of Definition 3.12, we know that Mh can
accept p1, p2, . . . , p�, p′

1, p′
2, . . . , p′

�′ only if it accepts p1, p2, . . . , p� and it
accepts p′

1, p′
2, . . . , p′

�′ . Considering all of the ways that n characters could be
split between p1, p2, . . . , p� and p′

1, p′
2, . . . , p′

�′ , we see that

F(n, � + �′, h) ≤
n∑

i=0

F(i, �, h)F(n − i, �′, h),

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:30 G. S. LUEKER

so

f�+�′,h(z) =
∞∑

n=0

F(n, � + �′, h)zn

≤
∞∑

n=0

n∑
i=0

F(i, �, h)F(n − i, �′, h)zn

= f�,h(z) f�′,h(z),

from which the Lemma follows immediately.

The following trivial technical lemma will be useful in the proof of
Theorem 3.13. (Recall that we have fixed c to be the integer whose existence was
guaranteed by Lemma 3.14.)

LEMMA 3.17. For large enough h (depending only on k) the following will
hold. Let � be an integer with

� ≥ h (75)

and let

d =
⌈

2c �

h

⌉
and �̄ = �

d
. (76)

Then, if �′ is ��̄ � or ��̄ �, we have

h
3c

≤ �′ ≤ h
c

(77)

and
log �′

�′ ≥ log h
h

≥ log �′

3c �′ . (78)

PROOF. We have

d =
⌈

2c �

h

⌉
≤ 2c �

h
+ 1,

so

��̄ � =
⌊

�

d

⌋
≥ � − (d − 1)

d
≥ � − 2c �/h

2c �/h + 1
= h − 2c

2c + h/�
≥ h

3c
(79)

where the last step holds for large h since � ≥ h and c ≥ 2. This establishes the
left inequality in (77). Also, since d ≥ 2c �/h we have

��̄ � =
⌈

�

d

⌉
≤ �

2c �/h
+ 1 = h

2c
+ 1 ≤ h

c

for large h, establishing the right inequality in (77).
Since log x/x is decreasing in x for x > e we have from (77), for large enough h,

log �′

�′ ≤ log(h/(3c))

h/(3c)
≤ 3c

log h
h

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:31

and
log �′

�′ ≥ log(h/c)

h/c
= c

log(h/c)

h
≥ c

2
· log h

h
≥ log h

h
,

establishing (78).

PROOF OF THEOREM 3.13. Let � be any integer with

� ≥ h (80)

and define d and �̄ as in (76). Decompose � as

� =
d∑

i=1

�i

where each �i is ��̄ � or ��̄ �. By Lemma 3.16, we have

log f�,h(z) ≤
d∑

i=1

log f�i ,h(z). (81)

Define z by

log(kz) = −
(

log h
h

)2/3

. (82)

Then, for large h, using Lemma 3.17 we can apply Lemma 3.15 (with the �i ,
which have value ��̄ � or ��̄ �, playing the role of � in Lemma 3.15) to the right of
(81) to conclude that

log f�,h(z) ≤ 2�

γ
log(kz) + O(d log �̄).

Thus, condition (28) of Theorem 3.3 holds for large � with

log λ(z) = 2

γ
log(kz) + O

(
d
�

log �̄

)

= 2

γ
log(kz) + O(�̄−1 log �̄)

= 2

γ
log(kz) + O(h−1 log h), (83)

so the bound obtained from an application of Theorem 3.3 is

2 log(kz)

(2/γ) log(kz) + O(h−1 log h)
= γ + O

(
h−1 log h
| log(kz)|

)

= γ + O
(

h−1 log h

h−2/3 log2/3 h

)
by (82)

= γ + O

((
log h

h

)1/3
)

,

completing the proof of Theorem 3.13.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:32 G. S. LUEKER

3.3.2. The Convergence Question for Domination-Based Methods. As men-
tioned above, [Dančı́k 1994; Dančı́k and Paterson 1995], use the notion of
undominated collations to produce upper bounds. They do not explicitly give
a method for obtaining a sequence of machines yielding improved bounds, but
here we discuss a very natural extension of their method. We conjecture that for
alphabet size k = 2 it does meet the condition of Theorem 3.13 and thus does
yield arbitrarily close upper bounds.

We (trivially) extend their definition of domination to lists of minimal match
pairs by saying that a list L of � minimal match pairs is undominated if the collation
of order � obtained by appending

(
ε

ε

)
to L is undominated. ConstructMh as follows.

Enumerate all lists of minimal match pairs of size at most h that are dominated, but
have no contiguous proper sublist dominated; call this Dh . Now let Mh be the ma-
chine that reads in lists of minimal match pairs and rejects whenever it finds one of
the elements ofDh appearing as a contiguous sublist of its input. It is easy to see that
this can be done by a finite state machine, and that this machine will never reject an
undominated list, so by Theorem 3.3, it gives a valid bound for arbitrary k. We will
assume in this section that the machine is minimized so it has no distinct equivalent
states.

Next we show that this approach meets the condition of Theorem 3.10, that
is, that Mh is regular. The following lemma will be useful; let

(0
0

)�
denote a list

consisting of � copies of
(0

0

)
.

LEMMA 3.18. If Mh rejects L ‖ (0
0

)�h/2� ‖ L ′, then it must also reject L or L ′.

PROOF. It is not hard to see that if a list L of minimal match pairs is undomi-
nated, both the list

(0
0

) ‖ L and the list L ‖ (0
0

)
must also be undominated. Thus, Dh

contains no lists beginning or ending with
(0

0

)
. If Mh rejects L ‖ (0

0

)�h/2� ‖ L ′, it

must be that some list D in Dh appears as a contiguous sublist of L ‖ (0
0

)�h/2� ‖ L ′.
Since D has size at most h it has length at most h/2. Since it cannot begin or end
with

(0
0

)
, it must then be a contiguous sublist of either L or L ′, proving the lemma.

From this lemma (and the fact that the finite state machine is minimized), it
follows that whenever the machine has not yet rejected and then sees a sequence
of �h/2� copies of

(0
0

)
, it will return to the starting state. Also, if the machine is in

the start state and reads
(0

0

)
, it will remain in the start state. Hence, the machine is

regular as required by Theorem 3.10.
Next we ask whether the sequence Mh efficiently covers �∗. The sequence Mh

trivially meets condition (1) of Definition 3.12, but at first it might seem that any
method based on undominated collations could not meet condition (2): It is easy
to give a string pair that has more than two undominated collations. For example,(01

10

)
can be written as

(01
1

)(
ε

0

)
or as

(0
10

)(1
ε

)
. This does not give a counterexample

to condition (2) however, because the lists of minimal match pairs in these two
decompositions (without including the final null pairs

(
ε

0

)
and

(1
ε

)
) do not generate

the same string pair. We make the following conjecture.

CONJECTURE 3.19. Over an alphabet of size k = 2, no string pair is generated
by two distinct undominated lists of minimal match pairs.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:33

If this conjecture can be proved, it would establish that the sequence Mh based
on domination efficiently covers {0, 1}∗ and thus gives bounds coming arbitrarily
close to γ2.

One easily establishes that this conjecture does not hold for any alphabets of
size larger than 2. Two easy counterexamples are the string pair

(012
102

)
, which has

both
(01

1

)(2
02

)
and

(0
10

)(12
2

)
as undominated lists of minimal match pairs, and the

string pair
(10120

0210

)
, which has both

(10
0

)(1
21

)(20
0

)
and

(10
0

)(12
2

)(0
10

)
as undominated

lists of minimal match pairs. Thus, we cannot apply Theorem 3.13 to the sequence
Mh when the alphabet size is more than 2. Of course, the fact that this particular
theorem does not apply does not immediately rule out the possibility that Mh ,
or perhaps some other construction based on undominated collations, produces
arbitrarily good approximations for an alphabet of size greater than 2.

3.3.3. Convergence of Canonicity-Based Methods. Now let Mh be the se-
quence of machines, based on canonicity, discussed in Section 3.2. As mentioned
there, each Mh covers �∗.

We now show that each Mh is regular, and that the sequence M1,M2,M3, . . .
efficiently covers �∗. We begin by establishing some properties of the transition
function δ of the finite state machine. Call the portion of the table lcs constructed
during the procedure delta of Figure 7 the limited-history table. The following two
simple observations will be useful.

LEMMA 3.20. As we move one step down, to the right, or diagonally down
and to the right, among locations for which the values in the limited-history table
are computed, the table values either remain the same or increase by 1.

LEMMA 3.21. The result returned by the procedure delta of Figure 7 remains
the same if we

(1) initialize lcs[h, h] to an arbitrary integer instead of h in line 3, or
(2) translate all indices into the table lcs by a constant amount.

The next lemma asserts that if the machine is in any accepting state q and reads
a match pair of the form

(c
c

)
, it will remain in an accepting state.

LEMMA 3.22. Let p = (c
c

)
where c is any character in �. Then for any q ∈ S,

we have δ(q, p) ∈ S.

PROOF. Since q ∈ S, we must have

lcs[h, h − 1] = lcs[h − 1, h] = h − 1, (84)

since otherwise q would have failed the canonicity test. The new characters read
corresponding to the match pair p will be ah+1 and bh+1; since these match we will
have lcs[h +1, h +1] = h +1. The canonical backtracking test accepts if we move
from (h+1, h+1) to (h, h), which can fail to happen only if lcs[h+1, h] or lcs[h, h+
1] is also equal to h + 1. But this and (84) would contradict Lemma 3.20.

Let S0 be the set of states 〈x, y, dx, dy〉 ∈ S in which dx and dy are both 1h .
Note that the start state of Mh is an element of S0.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:34 G. S. LUEKER

FIG. 8. Illustration for the proof of Lemma 3.23.

LEMMA 3.23. Let p = (c
c

)
where c is any character in �. Then, for any q ∈ S0,

we have δ(q, p) ∈ S0. In particular, if q is the start state (0h, 0h, 1h, 1h), then
δ(q,

(0
0

)
) = q.

PROOF. The proof is illustrated in Figure 8; the portion of the figure above
and to the left of the medium-thickness line shows the contents of the table
reconstructed from q. The entry in position (h, h) is h, and then the remaining
entries shown inside the box bounded by the thick and medium line are determined
by the fact that dx and dy are each 1h .

Let δ(q, p) be q ′ = (x ′, y′, dx ′, dy′). The portion of the lcs table corresponding
to q ′ is enclosed in the thin line. Following the procedure in Figure 7 produces the
new entries shown. (The value at lcs[h +1, h +1] is h +1 since ah+1 matches bh+1;
note that otherwise the values of the new entries do not depend on whether or not
any of the characters match.) Thus, dx ′ and dy′ will also consist of strings of h
one bits.

LEMMA 3.24. Let q ∈ S be any accepting state. Assume that starting in
state q, the machine reads h copies of

(1
1

)
followed by h copies of

(0
0

)
. Then, the

new state of the machine will be the start state (0h, 0h, 1h, 1h).

PROOF. The proof is illustrated in Figure 9; here, Lemma 3.21 is used to show
multiple calls to delta in a single table, without renumbering the indices. The
portion of the figure above and to the left of the thin line shows the state of the
table after starting in state q and then reading in h copies of

(1
1

)
. By Lemma 3.22,

we know that this state is in S, so we must have

lcs[h − 1, h] < h and lcs[h, h − 1] < h.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:35

FIG. 9. Illustration for the proof of Lemma 3.24.

Thus, all of the entries to the left of or above lcs[h, h] must be less than h. Note
that at this point all of the characters stored in the state are ones.

Now consider what happens when we read in the h copies of
(0

0

)
, which is

illustrated in the remainder of the figure. All of the new entries lcs[i, j] where
j < h will continue to be less than h since the third case of recurrence (39) will
never be used, so in particular lcs[2h, h − 1] is less than h. On the other hand, as
we step down the main diagonal from lcs[h, h] to lcs[2h, 2h], the entries increase
by 1 at each step since we match a 0 with a 0, so we will have lcs[2h, 2h] = 2h.
But then, by Lemma 3.20, we must have lcs[2h, j] = j for h ≤ j ≤ 2h. Similarly,
we have lcs[i, 2h] = i for h ≤ i ≤ 2h. Thus, encoding the bottom-right portion
of the table yields the state asserted in the lemma.

LEMMA 3.25. Let P = p1, p2, . . . , pm be any sequence of minimal match
pairs, and let q ∈ S and q ′ ∈ S0. Then if the machine starting in state q accepts P,
the machine starting in state q ′ must also accept P.

PROOF. First, consider how the limited-history lcs table evolves if we start
in q ′ = 〈x ′, y′, dx ′, dy′〉 and then read in the successive minimal match pairs
of P; this is illustrated for a specific example of a P and a q ′ ∈ S0 in part (a) of
Figure 10. Let lcs ′ denote the entries in this table, so lcs ′[h, h] = h. Note that,
since dy′ is a string of h 1-bits, decoding dy′ yields lcs ′[h, j] = j for 0 ≤ j ≤ h.
It follows by inspection of the algorithm of Figure 7 and an easy induction that for
any entry lcs ′[i, j] that we compute we have

i ≥ h and j ≤ h =⇒ lcs ′[i, j] = j. (85)

(In the figure, these entries are shown in a slanted font.) To see this, note
that in those cases where we simply copy an entry from the one above the
inductive step is trivial; on the other hand, in the cases where we compute an

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:36 G. S. LUEKER

FIG. 10. Illustration for the proof of Lemma 3.25. The portions of the lcs table corresponding to
each successive state are outlined by squares with thin lines. The small integers between certain lcs
table entries show the differences between these entries.

entry lcs ′[i, j] from the recurrence (39), by the inductive hypothesis we have
lcs ′[i − 1, j − 1] = lcs ′[i, j − 1] = j − 1 and lcs ′[i − 1, j] = j , so we set
lcs ′[i, j] to j regardless of whether the relevant characters match. By a symmetric
argument, for entries we compute we also have

i ≤ h and j ≥ h =⇒ lcs ′[i, j] = i. (86)

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

Improved Bounds on the Average Length of Longest Common Subsequences17:37

From (85) and (86), we conclude that, in particular,

(i ≥ h and j = h) or (i = h and j ≥ h)
=⇒ lcs ′[i, j] = h. (87)

Next consider how the limited-history lcs table evolves if we start in
q = 〈x, y, dx, dy〉 and then read in the successive minimal match pairs of P ,
letting lcs denote the entries in this table. (This is illustrated in part (b) of Figure 10
for a specific example of q, and for the same P as used in part (a); one need not
examine all of the details in part (b) to verify the proof.) From Lemma 3.20, it
follows immediately that, for the table entries that we compute,

(i ≥ h and j = h) or (i = h and j ≥ h)
=⇒ lcs[i, j] ≥ h; (88)

Combining this with (87) gives, for the table entries that we compute,

(i ≥ h and j = h) or (i = h and j ≥ h)
=⇒ lcs[i, j] ≥ lcs ′[i, j]. (89)

For any fixed sequence P , all computed entries lcs[i, j] for which i ≥ h and j ≥ h
can be expressed as nondecreasing functions of the set of values bounded in (89),
with no further dependence on a1a2 · · · ah and b1b2 · · · bh , so we have

i ≥ h and j ≥ h =⇒ lcs[i, j] ≥ lcs ′[i, j]. (90)

Let � be the canonical backtracking path for the case in which the machine starts
in state q. Since the machine starting in state q accepts P , the inequality in (90)
must be tight along �. Thus, by (90) during the canonical backtracking process
the entries lying off � are never more attractive (i.e., larger) for the table starting
in state q ′ than they were for the table starting in state q, so we will also accept P
when we start in state q ′.

(Note that it follows that all states in S0 are equivalent, but we did not take
advantage of this in our calculations.)

From Lemma 3.24, we see that each Mh satisfies part (1) of Definition 3.9,
and from Lemma 3.23 we see that it satisfies part (2). Thus, it is regular, so
Theorem 3.10 applies.

From Lemma 3.25, the sequence Mh satisfies part (1) of Definition 3.12. As
long as the total size of the match pairs read does not exceed h, the machine models
the process of computing the lcs table exactly, so by Lemma 3.4 we see that part (2)
holds. Thus, the sequence Mh efficiently covers �∗, so we have, by Theorem 3.13,

THEOREM 3.26. For arbitrary alphabet size k, the sequence Mh based on
canonicity is regular and efficiently covers � and thus gives bounds coming
arbitrarily close to γk .

ACKNOWLEDGMENTS. I thank Wayne Hayes for giving me pointers to information
about interval arithmetic, David Eppstein and one of the anonymous referees for
asking questions that encouraged me to pursue the issues addressed in Section 3.3,
Padhraic Smyth for bringing the book [Seneta 1981] to my attention, and Dan
Hirschberg for discussing with me the terminology in the literature relating to
dominant matches.

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

17:38 G. S. LUEKER

REFERENCES

ALEXANDER, K. S. 1994. The rate of convergence of the mean length of the longest common
subsequence. Ann. Appl. Prob. 4, 4, 1074–1082.

APOSTOLICO, A., AND GUERRA, C. 1987. The longest common subsequence problem revisited.
Algorithmica 2, 315–336.

BAEZA-YATES, R. A., GAVALDÀ, R., NAVARRO, G., AND SCHEIHING, R. 1999. Bounding the expected
length of longest common subsequences and forests. Theory Comput. Syst. 32, 435–452.

CHVÁTAL, V., AND SANKOFF, D. 1975. Longest common subsequences of two random sequences. J.
Appl. Prob. 12, 306–315.

DANČÍK, V. 1994. Expected length of longest common subsequences. Ph.D. dissertation, Department
of Computer Science, University of Warwick.

DANČÍK, V., AND PATERSON, M. 1995. Upper bounds for the expected length of a longest common
subsequence of two binary sequences. Rand. Struct. Algor. 6, 4, 449–458.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2005. The JavaTM Language Specification, Third
ed. Addison-Wesley, Reading, MA.

HIRSCHBERG, D. S. 1977. Algorithms for the longest common subsequence problem. J. ACM 24, 4
(Oct.), 664–675.

JANSON, S., LUCZAK, T., AND RUCINSKI, A. 2000. Random Graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley, New York.

JIANG, T., AND LI, M. 1995. On the approximation of shortest common supersequences and longest
common subsequences. SIAM J. Comput. 24, 5 (Oct.), 1122–1139.

KIWI, M., LOEBL, M., AND MATOUŠEK, J. 2005. Expected length of the longest common subsequence
for large alphabets. Adv. Math. 197, 2, 480–498.

KIWI, M., AND SOTO, J. 2008. On a speculated relation between Chvátal-Sankoff constants of
several sequences. Combinatorics, Probability and Computing. To appear. Available on-line at
http://arxiv.org/abs/0810.1066.

MACCLUER, C. R. 2000. The many proofs and applications of Perron’s theorem. SIAM Rev. 42, 3,
487–498.

MOTWANI, R., AND RAHGAVAN, P. 1995. Randomized Algorithms. Cambridge University Press,
Cambridge, MA.

OVERTON, M. L. 2001. Numerical Computing with IEEE Floating Point Arithmetic. Society for
Industrial and Applied Mathematics, Philadelphia, PA.

PATERSON, M., AND DANČÍK, V. 1994. Longest common subsequences. In Mathematical Foundations
of Computer Science 1994: 19th International Symposium, MFCS’94, Kosice, Slovakia, August 22–26,
1994: Proceedings, I. Privara, B. Rovan, and P. Ruzicka, Eds. Lecture Notes in Computer Science, vol.
841. Springer-Verlag, Berlin, Germany, 127–142.

PEVZNER, P. A. 2000. Computational Molecular Biology: An Algorithmic Approach. The MIT Press,
Cambridge, MA.

SENETA, E. 1981. Non-negative Matrices and Markov Chains, 2nd ed. Springer Series in Statistics.
Springer-Verlag, New York.

STEELE, J. M. 1997. Probability Theory and Combinatorial Optimization. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA.

RECEIVED JULY 2005; REVISED DECEMBER 2008; ACCEPTED JANUARY 2009

Journal of the ACM, Vol. 56, No. 3, Article 17, Publication date: May 2009.

