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 The Annals of Applied Probability
 1994, Vol. 4, No. 4, 1074-1082

 THE RATE OF CONVERGENCE OF THE MEAN LENGTH
 OF THE LONGEST COMMON SUBSEQUENCE'

 BY KENNETH S. ALEXANDER

 University of Southern California

 Given two i.i.d. sequences of n letters from a finite alphabet, one can

 consider the length Ln of the longest sequence which is a subsequence of
 both the given sequences. It is known that ELn grows like yn for some
 y E [0, 1]. Here it is shown that yn ? ELn ? yn - C(n log n)l/2 for an
 explicit numerical constant C which does not depend on the distribution

 of the letters. In simulations with n = 100,000, ELn/n can be determined
 from k such trials with 95% confidence to within 0.0055/ k, and the
 results here show that y can then be determined with 95% confidence to

 within 0.0225 + 0.0055/ k, for an arbitrary letter distribution.

 1. Introduction. Given a finite alphabet A and two sequences x1,..., xn
 and Yi, . . ., Yn in A, there is said to be a common subsequence of length k if
 forsome I<i1< -- <ik <n andlI <jl < .. <jk <n, wehave xi =yj
 for all 1 < m < k. We wish to consider the length Ln of the longest common
 subsequence (LCS) of two A-valued i.i.d. sequences X1, .. ,Xn and Y1, ..., Yn
 with a common law ,u. This problem and its variants have been much studied
 in probability theory [6, 7, 19], computer science [1, 3, 14] and mathematical
 biology [11, 15, 16, 18]; see also the volume [17] for several articles. In
 mathematical biology, the alphabet A = {a, c, t, g} of greatest interest con-
 sists of the four DNA bases, and one may want to test whether an observed
 common subsequence between two base sequences could be due to chance.

 The quantity 2(n - LO) is the minimal number of insertions and deletions
 needed to change either sequence to the other one; in computer science this
 "edit distance" is used as a metric on strings.

 It is easy to see that {ELn, n ? 1} is a superadditive sequence, that is,

 (1.1) ELn+m?ELn+ELm foralln,m>1.

 It therefore follows from standard methods that ELn/n has a limit and the
 convergence is from below, that is, there exists y = y( ,u) E [0, 1] such that

 (1.2) limELn/n = supELn/n = y.
 n n

 Kingman's subadditive ergodic theorem [13] further implies that Ln/n -> y
 a.s. For fair coin tossing, where A = {H, T} and ,u(H) = ,(T) = 1/2, simula-

 Received September 1992; revised December 1993.
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 LONGEST COMMON SUBSEQUENCE 1075

 tions and heuristics (see [19] and Section 3 below) suggest that y is between
 0.81 and 0.82.

 What interests us here is the rate at which the convergence in (1.2) occurs.
 The following is our main result.

 THEOREM 1.1. There exists a constant C such that for every alphabet A,
 law ,u and n > 1,

 (1.3) yn 2 ELn ? yn - C(n log n)'12.

 For a given no our calculations will give an explicit value of C valid for
 n ? nO. This C will be smaller for larger no as lower-order terms become
 negligible. In fact, we will show in Section 2 that for any C > 3.42, (1.3) is
 valid for all sufficiently large n.

 The bound in (1.3) is useful in conjunction with simulations, which can
 really only estimate ELn, in estimating y. Simulations with n = 100,000 will
 be discussed in Section 3, together with simulations which suggest that the
 (n log n)1/2 rate in Theorem 1.1 is nearly the best obtainable by the methods
 of this paper.

 Our method is modeled after that of [2], where a rate of convergence

 problem for first-passage percolation was considered. The analog of Ln is the
 passage time from the origin to a point n units out on an axis. The applicabil-
 ity of the method is not surprising in view of the fact that the LCS problem
 can be reformulated as a dependent first-passage percolation problem, as
 noted in [1, 4, 14, 20].

 2. Proof of the main result. In place of Ln it is more convenient to
 work with

 Un :=2(n - L)

 If we think of the corresponding letters of the two maximal identical subse-

 quences as being matched, then Un represents the number of letters unused
 in this matching. More generally, for 1 < i < j + 1 and 1 < m < n + 1, we
 define U([ i, j], [ m, n]) to be the number of letters unused after matching the
 corresponding letters of a longest common subsequence of Xi,..., Xj and
 YM.. ., Yn. When j + 1 = i and/or n + 1 = m, we interpret the correspond-
 ing sequence here as being empty, so that, for example, U([ i, i - 1], [im, n])
 = n - m + 1 if m < n + 1. When j + 1 ? i and/or n + 1 <im, we use the
 convention that U([i,j], [ m, n]) = oo. We will abbreviate U([1,j], [1, n]) to
 U(j, n). Define

 Vn min U(n + k, n - k).
 -n<k<n

 These quantities appear naturally in the first-passage reformulation of
 LCS, so we will briefly describe that reformulation now. Consider the integer
 lattice in [0, 2 n] x [0, 2 n], with horizontal and vertical bonds between near-
 est-neighbor sites of the lattice (that is, pairs x, y with I x - yI = 1) and a
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 1076 K. S. ALEXANDER

 diagonal bond from each (i - 1, j - 1) to (i, j), 1 < i < 2n and 1 <j < 2n.
 The passage time of each horizontal and vertical bond is defined to be 1, and
 the passage time of the diagonal bond from (i - 1, j - 1) to (i, j) is 0 if

 Xi = Yi, and oo otherwise. Then U([ i, j], [r, s]) represents the minimal total
 passage time among all paths from (i - 1, r - 1) to (j, s) for which each
 coordinate in nondecreasing. We will call such a path a nondecreasing path.

 Let In denote the diagonal from (0,2n) to (2n,0). Then Vn represents the
 minimal total passage time among all nondecreasing paths starting at (0, 0)
 and ending on In.

 For n ? 1 and ,3 > 0, define the generating functions

 gn( /3) = -log( E Eexp( -[l3(U(n + k, n - k) - 2))).
 -n<k<n

 Heuristically one expects the sum in the definition of gn( ,3) to behave like its
 largest term, so that gn(/3) behaves like -logEexp(- /3Vn). In fact, by
 Jensen's inequality we have

 (2.1) gn( /3) < -log(Ee P(Vn-2)) < f3(EVn - 2).
 The key property of gn( /3) is given in the following result.

 PROPOSITION 2.1. For each ,B > 0, the sequence {gn( /3): n ? 1} is superad-
 ditive, that is,

 (2.2) gn+.( /3) 2g9n( /3) + gm( ,3) for all m, n > 0.
 Consequently, for some constants vP < 2(1 -y)

 (2.3) limgn( /3)/n = supgn( /3)/n = ,Bv3 for each /3 > 0.
 n n

 Before proving Proposition 2.1 we note that together with (1.2) it tells us
 that, for each fixed n and /3, we have

 (2.4) gn( /3)/,3 < v n < 2(1 -y)n < EUn.
 Thus because EUn is subadditive and gn(/3) is superadditive, gn(/3)//3 and
 EUn are on opposite sides of the limiting approximation 2(1 - y)n. It follows
 that

 (2.5) EU2n -4(1 - y)n < EU2n - 2gn( /3)//3
 = (EU2n - 2EVn) + 2(EVn - gn( /3)7/X3)

 Note that all of this is valid even if /3 is chosen depending on n.
 To prove Proposition 2.1 we will need the following result.

 LEMMA2.2. Foreach n,m 2 0 and 0 <k < n + m,

 U(n + m + k , n + m - k) + 2

 >min{U([1,n +j],[1,n -j]) + U([n +j+ 1,n +m+k],
 [n -j + 1, n + m - k]): -n <j < n, k - m <j < k + m}.
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 LONGEST COMMON SUBSEQUENCE 1077

 PROOF. Let F be a nondecreasing path of minimal total passage time from
 (0,0) to (n + m + k, n + m - k). Then F intersects In in a unique point
 (n + x, n - x), and for some integer j, -n < j < n, either x = j or x = j +
 1/2. Since the path is nondecreasing, we have - n < x < n and k - m < x <

 k + m. If x = j, then breaking F into two pieces at (n + j, n - j) shows that

 U(n + m + k, n + m - k)

 = U([1,n +j], [1,n -j])

 + U([n + j + 1, n + m + k], [n-j + 1, n + m + k]).

 If x =j + 1/2, then replacing the bond from (n + j, n -j - 1) to (n + j +
 1, n -j) in F with the bond from (n +j, n -j - 1) to (n +j, n -j) and the
 bond from (n + j, n - j) to (n + j + 1, n - j) adds 2 to the passage time.
 Breaking the altered F at (n + j, n - j) then shows that

 U(n + m + k, n + m - k) + 2

 > U([1, n + j], [1, n -j])

 + U([n +j + 1, n + m + k], [n -j + 1, n + m - k]).

 In both cases, the desired result follows. fl

 PROOF OF PROPOSITION 2.1. From Lemma 2.2, independence and transla-
 tion invariance,

 E Eexp(-/3[U(n+m+k,n+m-k) -2])
 -(n+m)<k<n+m

 < E EEexp(-, 3min{U([1, n + j], [1,n - j])
 -(n+rm)<k <n+m

 + U([ n + j + 1, n + m + k ],[n -j + 1, n + m - k -4:

 -n < j < n, k - m ?<j < k + m})

 < E E Eexp(-,f{U([1, n + j], [, n-j])
 -(n+m)<k<n+m j: -n<j<n

 k-m <j<k+m

 +U([n +j+ 1,n + m +k],[n -j+ 1,n + m -k]) -4})

 = E E Eexp(-,l3[U(n + j, n - j) - 2])
 -(n+rm)<k<n+rm j: -n<j<n

 k-m < j < k + m

 xE exp(- ,3 [ U(m +k -j, m -k +j) - 2])

 = ( , Eexp(-J3[U(n +j,n -j)-2]))
 j: -n<J<n

 ( E Eexp({ 13[U(m + r, m - r) - 2])).
 r :-m < r<m
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 1078 K. S. ALEXANDER

 Taking logarithms then yields (2.2). Standard subadditivity arguments then
 give (2.3). The fact that vPp < 2(1 - y) follows from (2.1) and the fact that

 Vn < Un. ?

 The following lemma gives a special case of Azuma's inequality [5] and is
 essentially a martingale version of Theorem 2 of Hoeffding [10].

 LEMMA 2.3. Suppose f(xj,..., Xn, Y1 ... ., Yn) is a function on A2n with the
 property that changing any one argument of f while holding the others fixed

 changes the value off by at most 2. Then for Z = f(X1,... , Xn, Y1, ..., Yn) and
 u 2 0,

 P[Z-EZ ? u] < exp(-u2/4n).

 In particular,

 (2.6) P[ L2n - EL2n ? u/2] = PU2n- EU2n < -u] < exp(-u2/8n),

 (2.7) P[ L2n - EL2n < -u/2] = P U2n- EU2n ? u] < exp(-u2/8n),

 (2.8) P Vn -EVn < -u] < exp(-u2/8n)
 and

 (2.9) P[Vn -EVn ? u] < exp(-u2/8n).

 Theorem 1.1 is an immediate consequence of the next proposition, since

 monotonicity of EUn handles odd indices n. Any fixed values of A > 1 and
 0 > 'i suffice for proving Theorem 1.1, so if C > (2 + F), then (1.3) is valid
 for all sufficiently large n. For the explicit confidence intervals of Section 3,
 the more detailed requirements in (2.10) and (2.11) are important.

 PROPOSITION 2.4. Suppose n ? 8 and A, 0 > 0 satisfy

 (2 .10) A2 > 1 + 1/(2 nlog 2 n) + 2 A/(2 n log 2 n) 1/2

 + (log5.1A)/log2n + (loglog2n)/(2 log2n)
 and

 (2.11) 02 ? 2 + (log 4)/log 2 n.
 Then

 EU2n/(2n) < 2(1 - y) + 2(2A + 0)((log2n)/(2n))'12

 + ((8 log 2)/n)"12
 and

 (2.13)

 EL2n/(2n) ? y - (2A + 0)((log2n)/(2n))/2 -((2 log2)/n) 1/.

 PROOF. We will use (2.5). Let

 /3n = A((log2n)/(2n))"'2
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 Let us first bound EV -gn( - l )/fln. From integration by parts and Lemma
 2.3,

 E exp( - f3,V,)
 00

 = 13n, exp( - 13, x ) P [ V,, < x ] dx

 < exp(-/3n EVJ) + fEVn n exp(-3n3x)exp(-(EVn - X)2/(8n)) dx

 < exp(-IO3nEVJ) + f3n(87rn)1/2 exp(-f3nEVn + 2nI3 2).
 Therefore,

 exp(-gn( 13n)) = E Eexp( - !3n(U(n + k , n - k) - 2))
 -n<k<n

 (2.14) < (2n + 1)Eexp(-13n(Vn - 2))

 <(2n + 1){exp(- 3n(EVn-2))}[1+13n(81Tn)1/2 exp(2n32)].
 Observe that

 log (1.011(8rTn3) 1/2 exp (2 n 3 2))
 (2.15) 12n

 < log(2.860ir1/2A) + log((n,B32)1/2/A) + 2nf32.

 Taking logs in (2.14), rearranging and using nf3n > 2 log 2, (2.15) and (2.10),
 we obtain

 EVn - gn( 13n)/13n

 < 2 + /3k1 log(2n + 1) + 831 log(1 + (87Tn32 )12 exp(2n38 ))

 < 2 + '-1(log2n + 1/(2n)) +3'-1 log(1.O11(87rnl32)1/2 exp(2nI32))

 (2.16) < A -(2nlog2n)'12

 x [1 + 1/(2n log2n) + 2A/(2n log2n)1/2

 +(log5.1A)/log2n + (loglog2n)/2log2n + A2]

 < 2A(2n log2n)'12.

 Let us next bound EU2 - 2EVn. In terms of the first-passage formulation,
 we use what is essentially a reflection argument across the diagonal ln. From
 (2.6) of Lemma 2.3, we have

 1/2 < P [Vn < EVn + (8n log2) 1/2]

 (2.17) < Ei P[U(n + j,n -j) <EVn + (8nlog2)1/2],
 -n<j<n

 where j = n and - n need not be included in the sum because the minimum

 of U(n + j, n - j) always occurs with - n < j < n. Therefore, there exists an
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 1080 K. S. ALEXANDER

 index j with

 P [U(n + j, n -j) < EVn + (8n log 2) 1/2] > 1/(4n -2).
 Since U([ n + j + 1, 2n], [ n - j + 1,2n]) has the same distribution as U(n +

 j, n -j) = U([1, n + j], [1, n -j]) and is independent of it, we have

 1/(4n 2)2 P[U([1, n +j], [1, n-j]) < EVn + (8nlog2)1/2

 2.18) U([n +j + 1,2n], [n-j + 1,2n])
 ? EVn + (8nlog2)'/2]

 < p U2n < 2(EVn + (8n log2)1/2)].
 However, from (2.6) of Lemma 2.3 and (2.11),

 (2.19) P[U2n < EU2n -20(2n log 2n)1/2] < exp(- 02 log2n) < 1/(4n?)2
 which with (2.18) shows

 EU2n <2EVn + 2(8nlog2)1"2 + 20(2nlog2n)'/2.
 With (2.5) and (2.16) this proves (2.12), which implies (2.13). f

 Our method should be applicable to other problems which have a first-
 passage formulation. The main ingredients for which one must have analogs

 are, first, that there is enough independence that something like Lemma 2.3
 holds, and second, that for a path F as in the proof of Lemma 2.2 which meets

 in at a particular point, the two segments into which F is split by that point
 are independent or at least are appropriately comparable to independent
 segments as in [2].

 3. Confidence bounds and simulations. For 2n 2 100,000, (2.10) and
 (2.11) are satisfied with A = 1.123 and 0 = 1.457. Therefore, from Proposition
 2.4,

 (3.1) EL2n/2n < y < EL2n/(2n) + 0.0450.
 Given k independent observations of L2 n, let L2n denote the sample mean of
 these observations. For optimal confidence bounds, we place our estimate of y
 in the center of the interval suggested by (3.1), defining

 (3.2) AY2n = L2n/(2n) + 0.0225.
 From Lemma 2.3, for 2 n ? 100,000, x ? 0.0055/ /k and t = y - EL2n/2 n,

 p[l3/An yI > x + 0.0225]

 < P[L2n/(2n) - EL2n/(2n) ? x + t]

 + P[L2n/(2n) -EL2n/(2n) < -(x + 0.0450 - t)]

 < exp(-2kn(x + t)2)2 + exp(-2kn(x + 0.0450 - t)2)

 < exp(-2knx2) + exp(-2kn(x + 0.0450)2)

 < 0.05.
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 LONGEST COMMON SUBSEQUENCE 1081

 In particular, for 2n > 100,000 and k = 2,

 (3.3) P[I' I < 0.0264] ? 0.95.
 Eggert and Waterman [9] simulated two trials of L2n for fair coin tossing

 with 2 n = 100,000. The observed values were 81,223 and 81,146, yielding the
 estimate 72 = 0.8343. Therefore, from (3.3),

 (3.4) 0.8079 < y < 0.8607.

 with 95% confidence. By contrast, the best bounds known with certainty for
 fair coin tossing are 0.7615 < y < 0.8376 [7, 8]. By using this upper bound we

 can improve on (3.4) as follows. From Lemma 2.3 we have P[L2n/2n - 8 <
 y] ? 1 - exp(-2kn 8 2 ). In particular, with k = 2 and 8 = 0.0039 this yields
 0.8079 < y < 0.8376 with 95% confidence.

 Additional simulations in [21] suggest that the variance of Ln is approxi-
 mately proportional to n. If this is true, then Lemma 2.3 cannot be valid with
 any smaller power of n in the denominator of the exponent. This means that
 our method cannot yield a better power of n than the 1/2 which appears in
 (1.3). Of course, the actual difference yn - ELn may well be o(n1/2), but
 quite different methods would apparently be needed to obtain such an
 improved result.

 NOTE ADDED IN PROOF. An additional reference by P. Jaillet [(1992) Math
 Oper. Res. 17 964-980), has a proof of Lemma 2.3 (ii) and gives two-sided
 bounds with rates as in (1.4) for several functionals including TSP and MST.

 Acknowledgments. The author would like to thank J. M. Steele for
 helpful comments on an earlier version of this manuscript, and M. Eggert and
 M. Waterman for the simulations described in Section 3.
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