
MATH 314 Extra fun for Spring break! Mar 15

I don’t want you to feel bored over Spring break, so here’s a cute little problem you can spend
some time with. It doesn’t have much to do with anything we’ve been discussing so far, but it’s
still fun, especially if you enjoy matrices!

Firstly, for a graph G and vertices u, v ∈ V (G), the common neighborhood of u and v is the set
N(u) ∩N(v).

Recall that the handshaking lemma implies that if G is a graph wherein every vertex has odd
degree (i.e. the size of every neighborhood is odd), then G has an even number of vertices. Compare
and contrast this with the following theorem:

Theorem 1. If G is a graph wherein the common neighborhood of u and v has odd size for every
u ̸= v ∈ V (G), then G has an odd number of vertices.

I’ll walk you through the steps of a proof.

Problem 1. Suppose that G satisfies the hypothesis of Theorem 1. Prove that deg v is even for
all v ∈ V (G).

Hint: Consider the induced subgraph G′ = G[N(v)] and consider degG′ u for any u ∈ N(v).

We now turn to a little bit of linear algebra. Throughout what follows, we assume that the
vertex-set of G is [n]. The adjacency matrix of G is the matrix A ∈ {0, 1}n×n where Aij = 1 if and
only if ij ∈ E(G). Note that Aii = 0 for every i ∈ [n] since no vertex is adjacent to itself.

Problem 2. For any i, j ∈ [n] and any integer k ≥ 0, show that (Ak)ij is precisely the number of
i-j walks of length k in G.

Hint: Proceed by induction on k and explicitly work with the definition of matrix multiplication.
This also appears one of the excursion sections in the book in case you hit a brick-wall.

Problem 3. For any i, j ∈ [n], show that (A2)ij = |N(i) ∩N(j)|. In particular, (A2)ii = deg i for
all i ∈ [n].

This isn’t really related to this problem, but it’s a fun fact: tr(A2) = 2|E(G)| and tr(A3) =
6 · #(triangles in G). Unfortunately, there isn’t a good formula for tr(Ak) in terms of edges and
cycles for larger values of k.

Problem 4. Suppose that every vertex of G has even degree. Show that if x ∈ (2Z + 1)n, then
Ax ∈ (2Z)n.

Here, 2Z is the set of all even integers and 2Z + 1 is the set of all odd integers (reasonable
notation, don’t you think?).

Problem 5. Suppose that G satisfies the hypothesis of Theorem 1. Use Problems 1 and 3 to show
that if n is even and x ∈ (2Z+ 1)n, then also A2x ∈ (2Z+ 1)n.

Problem 6. Use Problems 4 and 5 to prove Theorem 1.

Hint: Fix any x ∈ (2Z + 1)n (e.g. the all-ones vector) and compute A2x in two different ways
to reach a contradiction if n is even.


