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These notes are from https://mathematicaster.org/teaching/graphs2022/extra_04-26.pdf

Consider coloring the edges of Kn with red and blue, so we have a function f : E(Kn) →
{red, blue}. For a graph H, we say that the coloring f has a red copy of H if we can find a copy
of H all of whose edges are colored red. Similarly, f has a blue copy of H if we can find a copy of
H all of whose edges are colored blue. We also so that f has a monochromatic copy of H if it has
either a red or a blue copy of H. All of these notions can be extended to more than two colors and
to coloring the edges of graphs other than cliques. But let’s stick with this situation for awhile.

We are interested in what monochromatic structures must appear in a red,blue-coloring of
E(Kn), no matter what that coloring actually is. For instance, if n ≥ 2, then certainly there must
always be a monochromatic edge, but we’re interested in more interesting structures.

Definition 1. For positive integers m,n, the Ramsey number R(m,n) is the smallest integer N
such that every red,blue-coloring of E(KN ) contains either a red copy of Km or a blue copy of Kn.

If you don’t like crayons, this is really equivalent to a pure graph property. Indeed, red,blue-
colorings of E(KN ) correspond to a graph and its complement on N vertices. To see this, simply
let G be the “red-graph”, then G is the “blue-graph”. In the reverse direction, given any N -vertex
graph G, create a red,blue-coloring of E(KN ) by coloring the edge red if it lives in G and coloring
the edge blue if it doesn’t (i.e. it lives in G).

Observation 2. For positive integers m,n, R(m,n) is the smallest integer N such that every N -
vertex graph G has either ω(G) ≥ m or α(G) ≥ n, i.e. G contains a copy of Km or G contains a
copy of Kn.

A priori, it is not even clear that R(m,n) even exists for all values of m,n! Why should it have
to? We will soon prove that it does indeed exist — a fact known as Ramsey’s theorem (well, really
Ramsey’s theorem is much, much more general).

Here are a few observations (assuming existence):

• If N is any integer with N ≥ R(m,n), then also every red,blue-coloring of E(KN ) contains
either a red copy of Km or a blue copy of Kn since Kr is a subgraph of KN whenever r ≤ N .

• R(m,n) = R(n,m) since we could swap red and blue.

• R(1, n) = 1 for every n since K1 is only a single vertex.

• R(2, n) = n for every n since any red edge would be a red copy of K2 and we need at least n
vertices to even have the chance at a blue copy of Kn (if we had only n− 1 vertices, then we
could color everything blue).

• If m1 ≤ m2 and n1 ≤ n2, then R(m1, n1) ≤ R(m2, n2).

Before we get into any proofs, I want to discuss the philosophy behind any argument about
Ramsey numbers.

• In order to prove that R(m,n) ≥ N for some integer N , you must somehow construct a
red,blue-coloring of E(KN−1) which has neither a red copy of Km nor a blue copy of Kn.
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• In order to prove that R(m,n) ≤ N for some integer N , you must show that every red,blue-
coloring of E(KN ) contains either a red copy of Km or a blue copy of Kn.

So the philosophy behind lower bounds vs upper bounds is very different.

Theorem 3. R(3, 3) = 6.

Proof. We need to prove two inequalities; we start by showing that R(3, 3) ≥ 6, so we must
construct a red,blue-coloring of E(K5) which has no monochromatic triangle. The following is such
a coloring:

Indeed, both the red-graph and the blue-graph are copies of C5, which is triangle-free. In fact, it
can be shown that this is the only coloring of E(K5) (up to permuting the vertices) which has no
monochromatic triangle.

Now we need to prove that R(3, 3) ≤ 6, so we need to show that every red,blue-coloring of
E(K6) has a monochromatic triangle. So fix any red,blue-coloring of E(K6). Fix any vertex v and
let R be the red-neighborhood of v and let B be the blue-neighborhood of v, so N(v) = R ⊔ B.
Since |N(v)| = 5, we have either |R| ≥ 3 or |B| ≥ 3. We are simply looking for a monochromatic
triangle, so the colors are symmetric for us; thus without loss of generality, suppose that |R| ≥ 3.
Now, if any edge xy ∈

(
R
2

)
is red, then {v, x, y} induces a red copy of K3. Otherwise, every edge in(

R
2

)
is blue, and so R contains a blue copy of K3 since |R| ≥ 3.

The same idea used to prove that R(3, 3) ≤ 6 can be exploited to bound R(m,n) in general.

Theorem 4. For integers m,n ≥ 2, if R(m− 1, n) and R(m,n− 1) both exist, then

R(m,n) ≤ R(m− 1, n) +R(m,n− 1).

In particular, R(m,n) exists as well.

Proof. Let N = R(m− 1, n) +R(n,m− 1) and let f be any red,blue-coloring of E(KN ). We claim
that either f contains a red copy of Km or a blue copy of Kn, which will imply that R(m,n) ≤ N
(and thus exists) as claimed.

Fix any vertex v, let R be the red-neighborhood of v and let B be the blue-neighborhood of
v. We know that |R| + |B| = N − 1 and so either |R| ≥ R(m − 1, n) or |B| ≥ R(m,n − 1) by the
definition of N .

Suppose first that |R| ≥ R(m − 1, n) and consider restricting the coloring of E(KN ) to
(
R
2

)
.

Since |R| ≥ R(m− 1, n), this restricted coloring contains either a red copy of Km−1 or a blue copy
of Kn. If it has a blue copy of Kn, then we’re done! Otherwise, let R′ ⊆ R be the vertices of a red
copy of Km−1. Since every edge between v and R is red, we then have that R′ ∪ {v} induces a red
copy of Km as needed.

If |B| ≥ R(m,n− 1), then the argument is identical, just with the colors flipped.



Corollary 5. For any positive integers m,n, the Ramsey number R(m,n) exists and

R(m,n) ≤
(
m+ n− 2

m− 1

)
=

(
m+ n− 2

n− 1

)
.

We’ll need something known as Pascal’s identity: for integers n ≥ k ≥ 1,(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

If you’ve never seen this before, it’s a good exercise! Basically, partition
([n]
k

)
into those sets which

contain the element n and those sets which don’t.

Proof. We prove this double-induction on m and n.
If m = 1 or n = 1, then certainly R(m,n) = 1 =

(
m+n−2

0

)
(since we just need a single vertex).

We may thus suppose that m,n ≥ 2. The induction hypothesis implies that R(m − 1, n) and
R(m,n − 1) both exist, so Theorem 4 implies that R(m,n) also exists and (also by the induction
hypothesis)

R(m,n) ≤ R(m− 1, n) +R(m,n− 1) ≤
(
m+ n− 3

m− 2

)
+

(
m+ n− 3

m− 1

)
=

(
m+ n− 2

m− 1

)
.

Corollary 6. For any positive integer n, we have

R(n, n) ≤
(
2n− 2

n− 1

)
≤ 22n−2 ≤ 4n.

To date, R(n, n) ≤ 4n is essentially the best-known upper bound for large values of n. Only
very, very minor improvements have been made, but no-one has been able to prove any bound of
the form R(n, n) ≤ (3.9999)n.

Corollary 7. Any red,blue-coloring of E(Kn) contains a monochromatic clique on > 1
2 log2 n many

vertices.
Stated in graph land: Any n-vertex graph G has either ω(G) > 1

2 log2 n or α(G) > 1
2 log2 n.

Proof. Let k be the largest integer for which 22k−2 ≤ n. Since R(k, k) ≤ 22k−2 ≤ n, we know that
any red,blue-coloring of E(Kn) contains a monochromatic copy of Kk. Now, by the definition of k,
we know that

22(k+1)−2 > n =⇒ 2(k + 1)− 2 > log2 n =⇒ k >
1

2
log2 n.

From Theorem 4, we have R(4, 3) ≤ R(3, 3) + R(4, 2) = 6 + 4 = 10. It turns out that the real
answer is 9. This can be proved by a slight modification of the proof of Theorem 4.

Theorem 8. R(4, 3) = 9.

Proof. Lower bound: In order to prove that R(4, 3) ≥ 9, we need to show that there is a red,blue-
coloring of E(K8) which does not contain a red copy of K4 nor a blue copy of K3. Below is such a
coloring (we draw the red and blue graphs separately to help with visibility):



The actual coloring is thus: for i ̸= j ∈ {0, . . . , 7}, color the edge ij blue if i− j ∈ {±1, 4} (mod 8)
and otherwise color ij red. I’ll leave it to you to check that this coloring actually works :)

Upper bound: In order to show that R(4, 3) ≤ 9, we need to show that any red,blue-coloring
of E(K9) contains either a red copy of K4 or a blue copy of K3. Indeed, fix any red,blue-coloring
of E(K9) and fix a vertex v. Let R,B denote the red- and blue-neighborhoods of v, respectively.
By exactly the same logic used above, we win if either |R| ≥ R(3, 3) = 6 or if |B| ≥ R(4, 2) = 4.
Thus, suppose that |R| ≤ 5 and |B| ≤ 3. Since |R| + |B| = |N(v)| = 8, this implies that |R| = 5
and |B| = 3. Since v was arbitrary, this holds for every vertex v.

Now, let Gr denote the red-graph. By what we just said, Gr is 5-regular. However, Gr has 9
vertices, and so Gr has an odd number of odd degrees; a contradiction.

Now for R(4, 4).

Theorem 9. R(4, 4) = 18

Proof. For the upper bound, we have R(4, 4) ≤ R(3, 4) +R(4, 3) = 18.
For the lower bound, the following is a red,blue-coloring of E(K17) which avoids monochromatic

copies of K4 (provided I didn’t make a mistake drawing it). The definition of the coloring is thus:
for i ̸= j ∈ {0, . . . , 16}, color the edge ij blue if i − j ∈ {±1,±2,±4,±8} (mod 17) and otherwise
color ij red. I’ll leave it to you to check that this coloring actually works :) If you actually want to
understand why this coloring works, look up “quadratic residues” and “Payley graphs”.





As far as I’m aware, the best-known bounds for R(5, 5) are 43 ≤ R(5, 5) ≤ 48 and the best-
known bounds for R(6, 6) are 102 ≤ R(6, 6) ≤ 165.

The following is a quote from Paul Erdős, who helped to develop the entire study of Ramsey
theory:

Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless
human beings can find the Ramsey number for red five and blue five. We could marshal
the world’s best minds and fastest computers, and within a year we could probably
calculate the value. If the aliens demanded the Ramsey number for red six and blue
six, however, we would have no choice but to launch a preemptive attack.

Let’s end today with a fun application of Ramsey numbers.
Let (x1, . . . , xn) be a sequence of real numbers. The length of this sequence is n. The sequence

is said to be increasing if x1 < · · · < xn and is said to be decreasing if x1 > · · · > xn. The sequence
is said to be monotone if it is either increasing or decreasing. Note that (x) is both increasing and
decreasing.

A subsequence of a sequence is formed by deleting some elements from the original sequence.
For example, (2, 3, 4, 1, 7) is a subsequence of (10, 2, 8, 9, 3,−20, 4, 1, 30, 12, 7,−3,−4). Formally,
if (x1, . . . , xn) is a sequence, then a subsequence is any sequence of the form (xi1 , . . . , xik) where
i1 < · · · < ik ∈ [n]. Note that (xi) is a subsequence of (x1, . . . , xn) for any i ∈ [n].

Reasonably, if (x1, . . . , xn) is a sequence of real numbers, then a monotone subsequence of
(x1, . . . , xn) is a subsequence of (x1, . . . , xn) which is monotone. Of course, if (x1, . . . , xn) is already
monotone, then any subsequence is also monotone.

Theorem 10 (Erdős–Szekeres). Every sequence of n distinct real numbers contains a monotone
subsequence of length > 1

2 log2 n.

Really, the Erdős–Szekeres theorem tells us that any sequence of n distinct real numbers contains
a monotone subsequence of length ≥

√
n, which is actually optimal. This can be proved through a

similar argument to what follows, but invoking DS5.3.4 instead of what we’ve shown about Ramsey
numbers.

Proof. Let (x1, . . . , xn) be any sequence of n distinct real numbers
Create a red,blue-coloring of E(Kn) (think of V (Kn) = [n]) where, for i < j ∈ [n], we color the

edge ij red if xi < xj and color the edge ij blue if xi > xj . Since the xi’s are distinct, every edge
gets a color.

Now, Corollary 7 tells us that this coloring contains a monochromatic copy of Kk for some
k > 1

2 log2 n; label the vertices of such a Kk as i1 < i2 < · · · < ik.
If this is a red copy of Kk, then we find that (xi1 , . . . , xik) is an increasing subsequence. If this

is a blue copy of Kk, then we find that (xi1 , . . . , xik) is a decreasing subsequence. In either case,
we have located a monochromatic subsequence of length k > 1

2 log2 n.


