MATH 314 Extra Notes Apr 19

These notes are from https://mathematicaster.org/teaching/graphs2022/extra_04-19.pdf

Recall that last time we proved that if G is a connected, planar graph on n > 3 vertices, then
|E(G)| < 3n — 6. Let’s use this fact to prove the 6-color theorem. We begin by showing that the
minimum degree of any planar graph is small.

Lemma 1. If G is a planar graph, then §(G) < 5.

Proof. If G has connected components G1,...,Gg, then §(G) = min;ey; §(G;), so it suffices to
consider the case when G is connected. Set n = |[V(G)|. If n < 2, then §(G) < 1, so we may
suppose that n > 3. Thus, we can apply Theorem 9 from last lecture along with the handshaking
lemma to bound.
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Since 6(G) and 6 are integers, we conclude that §(G) < 5 which concludes the proof. O

Corollary 2 (6-color theorem). If G is a planar graph, then x(G) < 6.

Proof. If H is a subgraph of G, then H is also planar. Therefore, thanks to Lemma 1
d(G) = max{d(H) : H is a subgraph of G} <5.
We may thus use our greedy-coloring bound to see that x(G) < d(G) +1 < 6. O

We’'ll return to coloring planar graphs in just a moment, but now for something somewhat
different.

We ended last lecture by showing that K5 and K33 are indeed non-planar graphs. It turns out
that K5 and K33 are “morally” the only non-planar graphs. What does “morally” mean here?
Well, if G is planar, than any subgraph is planar; contrapositively, if G contains any non-planar
subgraph, then G is also non-planar. So G is non-planar if it contains a copy of K5 or K33. But
consider the following graph where we just “place some extra vertices” on some of the edges of
K3732

Certainly this graph isn’t planar, but it does not contain a copy of K33 (nor of Kjx), as much as it
“looks like” K3 3.

Definition 3. Let G be a graph. A subdivision of G is formed by replacing some of the edges of
G by paths (each connecting the original vertices of the edge that it replaced) where these paths are
internally disjoint.
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Note that G is a subdivision of itself (since we can simply do nothing). Also, if H is a subdivision
of G and G is a subdivision of J, then H is a subdivision of J. Also, note that every “new” vertex
introduced when creating a subdivision has degree exactly 2.

Observation 4. Let G be a graph and let H be any subdivision of G. Then G is planar if and only
if H is planar.

Indeed, given a planar drawing of GG, we can just place down some extra vertices on some of
the drawn edges of G to get a planar drawing of H. In the other direction, given a planar drawing
of H, we can just follow the curve traced out by each of these extra paths (and forget that there
were vertices on it) to get a planar drawing of G. This works precisely because each of the vertices
introduced when creating H has degree exactly 2.

Therefore:

Observation 5. If G' contains a subdivision of either K5 or of K33, then G is non-planar.

Now, for some reason that I honestly can’t understand, graph theorists are obsessed with a
particular graph known as the Petersen graph (pictured below). If you've read the book, you've
probably seen it mentioned a couple times. The Petersen graph is pretty, but beyond that, I haven’t
found any good reason to actually show it to you before now. However, they’d probably revoke my
discrete-math-card if I let you leave this class without having ever seen it, so here we go!

The Petersen graph is non-planar. This probably isn’t too surprising — it looks so much like Ks!
But how do you actually prove that it’s non-planar? The picture on the right displays a subdivision
of K33 contained within the Petersen graph and so it cannot be planar. Interestingly, as much as
the Petersen graph resembles K35, it cannot contain a subdivision of K5 since the Petersen graph
is 3-regular yet any subdivision of K5 has 5 vertices of degree 4.!

Okay, great, if we can find a copy of a subdivided K5 or K33, then we know the graph is
non-planar. This doesn’t seem too terribly interesting... except!

Theorem 6 (Kuratowski’s Theorem). G is non-planar if and only if G contains a copy of some
subdivision of either K5 or K3 3.

We won’t give a proof of Kuratowski’s theorem, but I recommend looking one up if you feel so
inclined. Also, there are other similar classifications of planar graphs (using more general structures
than subdivisions), e.g. Wagner’s theorem.

Now back to coloring! Any excuse to break out my box of crayons and feel like a 5-year-old
again!

!There is, however, a sense in which the Petersen graph “contains a copy” of K5, known as minors (look up
Wagner’s theorem if you’re interested).



We end today (along with our excursion into planar graphs) by proving the 5-color theorem
(so we're only one color away from the famous 4-color theorem!). In order to do so, we will rely
on a technique known as Kempe swaps, which is a general idea and has nothing to do with planar
graphs (though an attempted proof of the 4-color theorem is the origin of this idea).

Let G be a graph and let f: V(G) — C be a proper coloring of G where C' is some set of colors.
Fix any two colors a # b € C and consider the subgraph of G induced by the vertices which receive
either color a or color b. An a,b-Kempe component of the coloring f is any connected subgraph
of this a,b-colored induced subgraph of G. Fix any such a,b-Kempe component Cpp of f. The
Kempe swap on f applied to Cy is performed by switching the colors a and b within Cy} (which
has only the colors a and b). Formally, the Kempe swap on f applied to C,; is a new coloring
1 V(G) — C where

f) it v ¢ V(Cap),
flv)=<a ifveV(Cyp) and f(v) =0,
b ifveV(Cyp) and f(v) = a.

Observe that f’ is still a proper coloring of G. Indeed, f’ does not change the colors outside
of V(C,;) and maintains a proper coloring within V(C,}) (since we just switched the colors of
the vertices on each edge and Cyy is an induced subgraph of G). Furthermore, since Cpp was a
connected component of the a, b-colored induced subgraph of G, so if zy € E(G) with x € V(Cyp)
and y ¢ V(Cyp), then f assigns y a color other than a, b.

Kempe swaps are useful for “extending a coloring”. Suppose we’ve properly colored some
vertices of our graph, but we sill need to color more. However, some uncolored vertex is adjacent
to vertices which see all available colors... Instead of giving up and going home, we can attempt
to perform a sequence of Kempe swaps on the already-colored vertices to “free up” a color that we
can then use to continue our coloring.

Theorem 7 (5-color theorem). If G is a planar graph, then x(G) < 5.

Proof. Suppose the claim is false, so x(G) > 6. Since we can pass to a 6-critical subgraph and every
subgraph of G is also planar, we may suppose that G itself is 6-critical without loss of generality.
Applying some facts we proved two weeks ago, we know that §(G) > 5. Additionally, §(G) < 5
since G is planar (Lemma 1), so actually §(G) = 5. Fix any v € V(G) with degv = 5.

Now, G is 6-critical, so we know that x(G —v) < 5, so let f: V(G) \ {v} — [5] be a proper
coloring of G — v. Now, if some color is un-unsed in N (v), then we can give v that color to arrive
at a proper 5-coloring of (G; a contradiction. Therefore, the 5 neighbors of v each receive a unique
color. Our goal is to perform some Kempe swaps on f to “free up” one of these colors to then allow
coloring v, or else somehow conclude that G is non-planar.

Now, G is planar, so fix some planar embedding of GG; hence, we will treat G as a plane graph
from now on. In this embedding, look at how the 5 edges incident to v leave v and label the
neighbors of v as z1, ..., x5 in anticlockwise order (starting wherever you please) based on how the
corresponding edge leaves v (see the picture(s) below). Technically, the actual vertices may not
actually appear to be in anticlockwise, but the important thing is that the corresponding edges are.
By permuting the colors if necessary, we may suppose that f(z;) = i.

We next claim that we may suppose that z;z;11 is an edge of G for each i € [5], where x511 = 7.
Indeed, based on the ordering, we know that x; and x;;1 are incident to a common face. If z; and
xi+1 are not adjacent, then we can draw a curve connecting x; to x;+1 which lives entirely within
this face (this technically requires a bit of an argument beyond us at the moment); thus, adding



this edge to the plane graph G is still a plane graph. Note that by adding these extra edges (should
they not already exist), G may no longer 6-critical, so we can no longer rely on this fact; however,

f is still a proper coloring of this modified graph (sans v) since none of x1, ..., x5 receive the same
color. Thus, we still reach a contradiction if we can somehow color v.
Now, looking only at v, x1, . .., x5, the drawing looks something like one of the following pictures

(pictures are misleading, though):

or

It is technically possible to argue that the left picture can be assumed, but we really shouldn’t
rely on pictures in our proof. But keeping a picture in your head is helpful, and the left picture
will give you a good enough intuition. Additionally, there could be extra edges between the x;’s
and there certainly will be edges between the z;’s and other vertices not drawn in the picture, but
v has no additional edges.

Now, consider the 1,3-Kempe component of f which contains x1. If x3 does not reside in this
Kempe component, then we may perform a Kempe swap on this component to recolor x; with
color 3 and not affect any other colors among s, ..., x5. Thus, we can now color v with color 1 to
get a proper coloring of G; a contradiction. Thus, x3 must reside within this Kempe component;
in particular, there is a path from 1 to x3 which uses only the colors 1 and 3; call this path P 3.
Of course, P; 3 contains no vertices from v, x1, ..., x5 except for x; and x3.

Next, consider the 2,4-Kempe component of f which contains xo. If z4 does not reside in this
Kempe component, then we may similarly perform a Kempe swap on this component to recolor xs
with color 4 and then color v with color 2 to get a proper coloring of G; a contradiction. Thus,
by the same reasoning as above, there is a path from zs to x4 which uses only the colors 2 and
4; call this path P, 4. Again, P4 contains no vertices from v,z1,...,25 except for xo and z4.
Furthermore, P; 3 and P» 4 are vertex-disjoint since these sets of colors are disjoint.

Now, if you look at the pictures above, it’s pretty easy to convince yourself that this is impossible
since P 3 and P» 4 must cross at some edge (since they can’t share a vertex), but we really shouldn’t
rely on pictures since they’re very misleading. Instead, we show that we have found a subdivision
of K35; a contradiction since we know G is planar.

Indeed, consider the vertices v, x1, x2, x3, z4. The only edges that we’re missing to get a K5 are
x1x3, xaxg and x4x1. Now, P 3 is an x1-z3 path, P> 4 is an x9-z4 path and (z4, x5, 21) is an x4-21
path. These paths are internally disjoint and have no internal vertices within v, x1,...,x4; thus,
we have found a subdivision of K5 within GG; a contradiction. O



Question: What was color 5 doing in the above proof? We never really touched it and didn’t
even wlog based on it. Why couldn’t we perform essentially the same proof with just 4 colors
and thus have a proof of the 4-color theorem? Well, Alfred Kempe (after whom Kempe swaps are
named) certainly thought so and published a proof of the 4-color theorem along these lines in 1879.
It was so convincing that it took 11 years before someone noticed the error! Then it took until 1976
before we had a real proof of the 4-color theorem (provided you trust computers?). Even today, we
still don’t have a “satisfactory” proof of the 4-color theorem.

If you have the time, try to repeat the argument with only 4 colors instead of 5. Here, you will
also have to handle the case when §(G) = 4, but this turns out to be fairly simple (essentially iden-
tical to our proof above). It’s the case when §(G) = 5 and one color is repeated in v’s neighborhood
that causes the issue. I found the following notes online https://web.math.ucsb.edu/~padraic/
ucsb_2014_15/math_honors_£2014/math_honors_£2014_lecture4.pdf which describes Kempe’s
“proof” of the 4-color theorem (and has really pretty pictures that I'm incapable of drawing); see
if you can spot the error! In my opinion, the error mostly boils down to “pictures can be very
misleading”.

I found the following quote from John Conway (inventor of Conway’s game of life if you've
heard of that) about Kempe’s “proof”:

1 did read a few of the papers from this period, including Kempe’s proof, Tait’s deduction
of his edge-coloring criterion from it, and an article in which Heawood pointed out the
mistake, among other things, and the impression I got from them was much the same
as Jim’s. There was indeed a fair amount of interest in Kempe’s “theorem”, but not
much evidence that any great number of people actually scrutinized his proof, or even
read it. I don’t think it would have made much difference if they had. The proof is very
convincing, and in the days when the amateur provers were still interested in FCT, 2
times out of 3 “Kempe’s Catastrophe”, as Tom O’Beirne used to call it, was the proof
they’d produce. Tom had a set lecture in which he gave Kempe’s proof, illustrated by
a specially made-up board with colored pegs, and seldom could anyone in the audience
find anything wrong with it.

%You youngins out there may reply “Computers are great! Why would you trust humans? After all, Kempe’s
proof was wrong.”. Fair point, but math, at its heart, is about why something is true, not just that it’s true. Even
though Kempe’s proof was wrong, the ideas contained therein are crucial to the current proof that we have and have
been applied in numerous other settings.
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