
MATH 314 Extra Notes Mar 29

These notes are from https://mathematicaster.org/teaching/graphs2022/extra_03-29.pdf

Let G = (V,E) be a graph. A matching is a set of edges which are vertex-disjoint. Equivalently,
a matching is an independent set in the line graph L(G). Note that the empty-set is trivially a
matching, so every graph has a matching. If M ⊆ E is a matching and e ∈ M , we say that the
end-points of the edge e are matched.

For a subset A ⊆ V , a matching M ⊆ E is said to saturate A if every vertex in A is incident to
some edge in M . We may also say that M covers A, but saturates tends to be the more common
jargon. A perfect matching is a matching which saturates V ; that is, every vertex is an end-point of
some edge of the matching. Note that if G has a perfect matching, then this matching has exactly
|V |/2 many edges; in particular, |V | must be even in order to allow this. Conversely, a matching
in G is a perfect matching if and only if it has exactly |V |/2 many edges.

We are often interested in the largest matching in a graph, or if the graph has a matching which
saturates a particular set. We now introduce a few more terms and notation (some of which may
seem unrelated at this point).

1. The independence number of G, denoted by α(G) is the size of a largest independent set in
G.

2. The matching number or edge-independence number of G, denoted by α′(G) is the size of a
largest matching in G. Equivalently α′(G) is the size of the largest independent set in the
line graph L(G)how to authenticate.

3. A vertex-cover of G is a subset of vertices B ⊆ V such that every edge of G has at least one
end-point in B. Equivalently, B ⊆ V is a vertex-cover of G if and only if either B = V or
G−B (deleting vertices) has no edges.

The vertex-cover number of G, denoted by β(G), is the size of a smallest vertex-cover of G.

4. An edge-cover of G is a subset of edges S ⊆ E such that every vertex of G is incident to at
least one edge in S. Equivalently, S is an edge-cover of G if and only if the subgraph (V, S)
has no isolated vertices.

The edge-cover number of G denoted by β′(G), is the size of a smallest edge-cover of G. Note
that β′(G) only makes sense if G has no isolated vertices since an isolated vertex cannot be
covered by any edge.

Generally in graph theory, the use of a prime (′) denotes an edge-version of a parameter usually
defined based mainly on the vertices of a graph (what this actually means varies from case-to-case).
Oftentimes, this is the same parameter of the line graph (for instance, α′(G) = α(L(G))), but not
always (for instance, β′(G) ̸= β(L(G)) in general, e.g. G = K1,3).

As a quick example, for K3, we have α = α′ = 1 and β = β′ = 2. In general, for Kn (n ≥ 2),
we have α = 1, α′ = ⌊n/2⌋, β = n − 1, β′ = ⌈n/2⌉ (convince yourself that these are true to make
sure you understand the concepts).

We will work on relating these four parameters. In particular, we will prove the following:

1. α′(G) ≤ β(G) ≤ 2α′(G) for any graph.
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2. α′(G) = β(G) if G is bipartite (this is probably the most important in the list and is known
as Kőnig’s theorem).

3. α′(G) + β′(G) = n for any n-vertex graph with no isolated vertices.

4. α(G) + β(G) = n for any n-vertex graph (this is a homework exercise).

Items 3 and 4 formalize the intuition that α, β and α′, β′ are “complementary”.
Note that items 1, 3 and 4 together imply that α(G) ≤ β′(G) ≤ (n + α(G))/2 if G has no

isolated vertices.
We begin with α′ and β.

Theorem 1. For any graph G, we have α′(G) ≤ β(G) ≤ 2α′(G).

Proof. Let M ⊆ E(G) be a maximum matching, so |M | = α′(G).

Consider letting C consist of all end-points of the edges of M . We claim that C is a vertex-cover
of G. Indeed, if this were not the case, then there would be some edge e ∈ E(G) which has neither
end-point in C. But then, M ∪{e} would be a strictly larger matching, which is impossible. Thus,
β(G) ≤ |C| = 2|M | = 2α′(G).

On the other hand, let C ⊆ V (G) be a minimum vertex-cover of G, so |C| = β(G). Certainly
C must contain at least one end-point of each edge in M . Since all of these end-points are distinct,
we must have β(G) = |C| ≥ |M | = α′(G).

It is possible that α′(G) = β(G) (see Kőnig’s theorem below). It is also possible that β(G) =
2α′(G), e.g. Kn when n is odd (where we have β = n− 1 and α′ = ⌊n/2⌋ = (n− 1)/2).

Problem 1 (Extra-challenging problem). Prove that β(G) = 2α′(G) if and only if each connected
component of G is an odd-clique.

I really don’t want to lead you astray and waste your time. You don’t have the tools necessary
to actually prove this (unless I’m missing something). The proof I have in mind (though perhaps
there’s a simpler one) requires HW9.4 along with the Tutte–Berge formula. We won’t cover the
Tutte–Berge formula in this class, though it’s a lovely theorem. If you have the time and motivation,
I encourage you to look into Tutte–Berge and figure out how to use it to prove the above problem.
I’ve included a proof of the above problem which invokes Tutte–Berge (as a black-box) on the last
page of these notes in case you care.

Theorem 2 (Kőnig’s Theorem). If G is a bipartite graph, then α′(G) = β(G). In other words, for
bipartite graphs, the size of a maximum matching is equal to the size of a smallest vertex-cover.

Proof. Suppose that G has parts A and B. Recall the notion of A-B paths from the notes from
03-03; we will rely on the workhorse of Lemma 1 in those notes.

Since G has parts A and B, we observe that A-B paths correspond exactly to the edges of
G. In other words, a set of disjoint A-B paths corresponds exactly a matching in G and so
α′(G) = pG(A,B); the maximum number of disjoint A-B paths.

On the other hand, recall the notation of an A-B separator from the notes from 03-03 which
is a set of vertices so that every A-B path contains at least one of these vertices. Observe that
U ⊆ V (G) = A⊔B is an A-B separator if and only if every edge of G is incident to some vertex of
U . In other words, an A-B separator in G is precisely a vertex-cover of G and so β(G) = κG(A,B);
the size of a minimum A-B separator.

Applying Lemma 1 from the notes from 03-03, we conclude that

α′(G) = pG(A,B) = κG(A,B) = β(G).



We will use Kőnig’s Theorem next lecture in order to prove, arguably, the most important
theorem about matchings: Hall’s Marriage Theorem.

But, for now, we seek to prove that α′(G) + β′(G) = n for any n-vertex graph with no isolated
vertices. Recall that β′(G) only makes sense if G has no isolates since we cannot cover an isolated
vertex with an edge.

In order to accomplish this feat, we need to understand the structure of a minimum edge-cover.

Lemma 3. Let G = (V,E) be a graph with no isolated vertices. If S ⊆ E is a minimum edge-cover
of G, then (V, S) is a forest with no isolated vertices.

Proof. Since S is an edge-cover, we cannot have any isolated vertices in (V, S) since an isolated
vertex would be an uncovered vertex.

Suppose for the sake of contradiction that (V, S) contains a cycle; label the vertices of one of
these cycles as (v1, . . . , vk), of course k ≥ 3. Consider the edge e = v1v2, which covers only the
vertices v1 and v2. However, v1vk ∈ S covers v1 and v2v3 ∈ S covers v2. That is to say, S \ {e} is
also an edge-cover of G, contradicting the minimality of S.

In fact, more is true. One can prove that every connected component of this forest is a star
(that is, isomorphic to K1,ℓ for some ℓ ≥ 1), but this extra structure will be unnecessary for our
arguments. However, it’s a good exercise! The key lemma that one needs to establish in order to
get this extra structure is the following: If G is a connected graph with no isolated vertices which
contains no copy of K3 nor of P4, then G is a star.

Theorem 4. If G is an n-vertex graph with no isolated vertices, then α′(G) + β′(G) = n.

Proof. We prove the two inequalities (≤ n and ≥ n) separately. Before we dive in, let me walk
through the intuition.

Suppose that we start with maximum matching (which has size α′(G)); if we can somehow use
this matching to build a edge-cover with at most n−α′(G) many edges, then also β′(G) ≤ n−α′(G).

Suppose that we start with a minimum edge-cover (which has size β′(G); if we can somehow use
this edge-cover to build a matching with at least n−β′(G) many edges, then also α′(G) ≥ n−β′(G).

This same intuition (with changed terms and symbols) will help you work through HW9.4.

To begin, we show that α′(G) + β′(G) ≤ n.
Let M ⊆ E(G) be a maximum matching of G, so |M | = α′(G). Let A be the set of end-points

of M and let B = V (G) \ A. Note that |A| = 2|M | = 2α′(G) and so |B| = n − 2α′(G). Now,
since no vertex of B is isolated, we can arbitrarily select one edge incident to each vertex in B to
build a set S ⊆ E(G) with |S| ≤ |B| such that S covers B.1 Since M covers A, S covers B and
V (G) = A ⊔B, we thus know that M ⊔ S is an edge-cover of G. Therefore,

α′(G) + β′(G) ≤ α′(G) + |M ⊔ S| = α′(G) + |M |+ |S| ≤ α′(G) + α′(G) + (n− 2α′(G)) = n.

We now show that α′(G) + β′(G) ≥ n, which will conclude the proof.
Let S ⊆ E(G) be a minimum edge-cover of G, so |S| = β′(G). Note: we know that S exists

since G has no isolated vertices. Applying Lemma 3, we know that (V, S) is a forest with no
isolated vertices; let G1, . . . , Gk denote the connected components of this forest. Since (V, S) has

1One can actually show that |S| = |B| since otherwise we could extend the matching M (why?). However, simply
knowing that |S| ≤ |B| suffices for our arguments.



no isolated vertices, we know that each Gi has at least one edge. We may therefore select one edge
from each Gi to build a matching with k edges (since the connected components are vertex-disjoint),
so α′(G) ≥ k. Additionally, (V, S) is a forest with k connected components and so it has exactly
n− k many edges, so |S| = n− k. Therefore,

α′(G) + β′(G) ≤ k + (n− k) = n.



As promised, here is a proof of Problem 1, which uses HW9.4 and the Tutte–Berge formula as
black-boxes.

To begin, we should state the Tutte–Berge formula. For a graph G, let odd(G) denote the
number of connected components of G which have an odd number of vertices.

Theorem 5 (Tutte–Berge). Let G = (V,E) be any graph. Then

α′(G) =
1

2
· min
U⊆V

(
|V |+ |U | − odd(G− U)

)
.

This is yet another case where the “obvious” necessary condition is sufficient. Can you see what
this “obvious” necessary condition is? (I don’t claim that it’s literally obvious, just “obvious” in
the sense that if you think about matchings in just the right way, it’ll pop out.)

Proof of Problem 1. We have already remarked that β(G) = 2α′(G) if G ∼= Kn where n is odd. If
G has connected components G1, . . . , Gk, then β(G) =

∑k
i=1 β(Gi) and α′(G) =

∑k
i=1 α

′(Gi) and
so β(G) = 2α′(G) if every connected component of G is an odd-clique.

Now suppose that β(G) = 2α′(G) and that G has n vertices.
Now, the Tutte–Berge formula tells us that there is some U ⊆ V such that

α′(G) =
1

2

(
n+ |U | − odd(G− U)

)
.

HW9.4 tells us that α(G) + β(G) = n and so α(G) = n − β(G) = n − 2α′(G) by assumption.
Therefore,

α(G) = n− 2|M | = n− 2α′(G) = odd(G− U)− |U |.

Suppose that the connected components of G − U are G1, . . . , Gℓ; of course ℓ ≥ odd(G − U) (we
could have a strict inequality here if some components have an even number of vertices). Of course,
there can be no edges in G between these ℓ components, so we find that α(G) ≥

∑ℓ
i=1 α(Gi)

since we could simply combine independent sets from the individual components. Combining these
observations, we find that

odd(G− U)− |U | ≥
ℓ∑

i=1

α(Gi) =⇒ |U | ≤ odd(G− U)−
ℓ∑

i=1

α(Gi).

Certainly α(Gi) ≥ 1 for each i ∈ [ℓ] and so
∑ℓ

i=1 α(Gi) ≥ ℓ ≥ odd(G − U). This implies that
|U | ≤ 0 =⇒ |U | = 0. In particular, U = ∅ and so G − U = G; thus G1, . . . , Gℓ are the
connected components of G. Since certainly |U | cannot be negative, we, in fact, have shown that∑ℓ

i=1 α(Gi) = ℓ = odd(G). In particular, each of G1, . . . , Gℓ have an odd number of vertices.
Furthermore, α(Gi) = 1 for all i ∈ [ℓ] and so each Gi is a clique. This concludes the proof.


