Discrete Math Recitation #5 Feb 11

These notes are from http://math.cmu.edu/~cocox/teaching/discrete20/rec5.pdf

This is a review day, so hopefully you came prepared with your own questions! Here are a couple
additional problems to think about (solutions are on the next page).

Problem 1. Prove that Zf:[) (™M) = (m;”) in two different ways:

1. Using double counting.
2. Using the binomial theorem.

Problem 2. Fix k > 2 and let ai(n) denote the number of words in [k]" which have an even number
of 1’s. Find a formula for a(n).

(Hint: It may be helpful to consider also bi(n) to be the number of words in [k]™ which have an
odd number of 1’s.)

Problem 3. Let Q be a finite set and let g: 2% — R be any function. Define the function f: 2 — R
by
£(8) =" (1),

TCS
for all S C . Prove that for any S C €,

g(8) =Y (=)D

TCS

(This is known as the Mdbius inversion formula on the Boolean lattice.)


http://math.cmu.edu/~cocox/teaching/discrete20/rec5.pdf

Solution to Problem 1. Part 1 was actually Problem 6 on Homework 1, so please review that solution.
For Part 2, we’ll use the binomial theorem. Firstly,
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On the other hand,
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Since this holds for every z, it must be the case that for every k, the coefficient of z* is the same on
; . +n\ __ k
both sides; therefore, ("/") =Y., (T) (kfj) ]

Solution to Problem 2. Let Ap(n) denote the set of words in [k]™ with an even number of 1’s and
let Bi(n) denote the set of words in [k]™ with an odd number of 1’s; therefore ax(n) = |Ax(n)| and
br(n) = |Bi(n)|. Observe that Ai(n), Bi(n) forms a partition of [k]|" so ax(n) + bix(n) = k™. We will
show that ax(n) — bx(n) = (k — 2)™, which will imply that

ax(n) = %(k:" (k2.

For a word w € [k]", let z(w) denote the number of 1’s in w. Define the sign of w to be
o(w) = (—=1)*®) and set Q := Zwe[k}n o(w). We first observe that

Q= Y (1™ + > (-1 =ax(n) = biy(n).
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Now, for w € [k]™, define F(w) = min{i € [n] : w; € {1,2}}; that is the smallest coordinate of
w which is either a 1 or a 2. Observe that F'(w) is undefined if and only if w has neither a 1 nor a
2; thus {w € [k]" : F(w) undefined} = {3,...,k}", which has size (k — 2)". Furthermore, if F'(w) is
undefined then o(w) = 1 since w has no 1’s.

Now, consider w for which F(w) is defined and let f(w) denote the word in which the F'(w)’th
coordinate is flipped from a 1 to a 2 or a 2 to a 1. For instance, f(342122) = 341122. Observe that f
is an involution on those w’s for which F'(w) is defined; furthermore the number of 1’s in w and f(w)
differ by exactly one, so o(w) = —o(f(w)).

We can therefore compute

Q= > o+ Y. (o) +o(f(w)=(k-2)" O

F(w) ulllr}l:deﬁned {w, f(w)}



Solution to Problem 3. We first show that the claimed g is valid.
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=> f(R)-1[R=5]
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= f(9).

Of course, just because the claimed g satisfies the formula, doesn’t mean that we’re done with the

problem. Recall that g was some fixed function in the problem statement and f was defined from g.

So far, we’ve shown only that the claimed formula will define the same f, not that it was actually

the function we started with. In other words, we need to show that this is the only g that will work.
To this end, suppose that g, h: 2 — R are such that for every S C ,

Y 9(T) = h(T)

TCS TCS

we need to show that ¢ = h. Suppose not, then g(S) # h(S) for some S C . Since (2 is a finite
set, we may consider the smallest S for which ¢(S) # h(S) (here, smallest simply means smallest
size). Note that there may be multiple S’s of smallest size; however, we know that ¢g(T) = h(T') for
all |T'| < |S|, which is all that is important. We then compute

> g(T )+ g(T) = g(S)+ > W)

TCS TCS TCS
#h(S)+ > W(T) = h(T);
TCS TCS
contradicting our original assumption. O



