(Rewrite) $[+3]$ What is wrong with the following proof of the fact that

$$
\sqrt{1+\sqrt{1+2 \cdot \sqrt{1+3 \cdot \sqrt{1+4 \cdot \sqrt{1+5 \cdot \sqrt{\cdots}}}}}}=2 ?
$$

Interestingly enough, the above identity is actually true. Additionally, there are two errors in the following proof; it is enough to find just one.

Claim. For any $n \in \mathbb{N} \cup\{0\}$,

$$
\sqrt{1+n \cdot \sqrt{1+(n+1) \cdot \sqrt{1+(n+2) \cdot \sqrt{1+(n+3) \cdot \sqrt{1+(n+4) \cdot \sqrt{\cdots}}}}}=n+1 \text {. } n=\sqrt{1+(n)}}=
$$

Proof. We prove by induction on n. Define

$$
f(n)=\sqrt{1+n \cdot \sqrt{1+(n+1) \cdot \sqrt{1+(n+2) \cdot \sqrt{1+(n+3) \cdot \sqrt{1+(n+4) \cdot \sqrt{\cdots}}}}}}
$$

for easier reference. Notice that $f(n)=\sqrt{1+n \cdot f(n+1)}$.
Base case: If $n=0$, then $f(n)=1$, so the base case holds.
Induction hypothesis: For some $n_{0} \in \mathbb{N} \cup\{0\}, f\left(n_{0}\right)=n_{0}+1$.
Induction step: Assuming $f\left(n_{0}\right)=n_{0}+1$, deduce that $f\left(n_{0}+1\right)=n_{0}+2$.
We know that $f\left(n_{0}\right)=n_{0}+1$, so squaring both sides gives

$$
\begin{aligned}
f\left(n_{0}\right)^{2} & =\left(n_{0}+1\right)^{2} \\
\Rightarrow 1+n_{0} \cdot f\left(n_{0}+1\right) & =n_{0}^{2}+2 n_{0}+1 \\
\Rightarrow n_{0} \cdot f\left(n_{0}+1\right) & =n_{0}\left(n_{0}+2\right) \\
\Rightarrow f\left(n_{0}+1\right) & =n_{0}+2 .
\end{aligned}
$$

Thus, by the principle of mathematical induction, $f(n)=n+1$ for all $n \in \mathbb{N} \cup\{0\}$. Setting $n=1$ yields the original identity.

