Justify all answers with formal arguments!

(12 pts)

(1) (a) [+3] Fill in the following truth table

p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg (p \lor q)$	$(\neg p) \land (\neg q)$
Т	Т					
Т	F					
F	Т					
F	F					

- (b) [+1] What logical equivalence does this truth table prove?
- (2) For two *n*-sided dice A, B, we say that $A \simeq B$ if the probability that A rolls higher than B is equal to the probability that B rolls higher than A; in other words, $A \simeq B$ if, on average, A and B "tie."¹
 - (a) [+2] Show that $A \simeq A$ for any die A.
 - (b) [+6] Is " \asymp " transitive? In other words, if we have *n*-sided dice A, B, C with $A \asymp B$ and $B \asymp C$, must it be the case that $A \asymp C$?
- (3) **BONUS.** [+3] The standard *n*-sided die, which we denote by S_n , is an *n*-sided die with sides labeled $1, 2, 3, \ldots, n$, just as you would expect. Now, fix integers d_1, \ldots, d_n (not necessarily distinct) between 1 and *n*, inclusive, such that $d_1 + \cdots + d_n = \frac{n(n+1)}{2}$. If *D* is the *n*-sided die with sides labeled d_1, \ldots, d_n , must it be true that $D \asymp S_n$? Feel free to use the formula $\sum_{i=1}^n i = \frac{n(n+1)}{2}$, which we will prove later.

¹Remember, these are independent, fair dice, so the probability that A rolls higher than B is simply the number of ways for A to roll higher than B