Talagrand’s Inequality
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Throughout this document, 1,...,8, will be fixed probability spaces and we will consider
Q=0 x -+ xQ,, equipped with the product o-algebra.

Theorem 1 (Talagrand for the working mathematician). Let f: Q@ — R be a measurable function.
Suppose that for every T € ), there is another vector d(Z) = (ozl(a_:'), e ,ozn(f)) € R™ satisfying

F@ S+ Y i@ forallifeq.

i T AYi

For independent samples x1,. ..,z with x; € Q;, define Z = f(x1,...,xy,). Then

—)\2
Pr||Z -MZ| > )\ §4exp< —— )
[ ) 4supgzeqla(@)]?

Here, M Z denotes “the” median of the random variable Z.
We additionally note that, by using — f instead of f, the condition can be replaced by

F@=f@) - ). (@  forall e Q.

i X FEY;

While the above theorem is how we will generally use Talagrand’s inequality, Talagrand’s ac-
tually inequality is more general, and we will need to spend some time setting up the relevant
defintions.

For a vector @ € R", define the (signed) distance on Q by

da(Z) = Y
i T AY;
which is a weighted Hamming distance. Naturally, for a set A C (), we extend

dz(Z, A) < inf dg(7, @).
acA

We then define Talagrand’s Convex Distance by

p(#, A) = sup da(7, A).

llall=1
Theorem 2 (Talagrand’s Inequality). Suppose that 1, ..., x, are independent samples with x; € §;
and set ¥ = (x1,...,x,). For any measurable A C Q,

Pr[7 € A] - Prlp(&, A) > t] < e ©/4.
We will actually prove the following:

Theorem 3. Suppose that x1, ..., x, are independent samples with x; € §; and set ¥ = (z1,...,Ty).

For any measurable A C €,
p(Z, A)? 1
E <
eXp< 4 )= Prie A
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Observe that Theorem 3 implies Theorem 2. Indeed, we can use Markov’s inequality with the
random variable X = p(#, A) to bound

| eX?/4 1

2 21 X?2/4 t2/4
Pr[X > t] < Pr[X? > t*] = Prle > < et?/4 T Pr[z € A]-et?/4

In order to actually prove Theorem 3, we will need to understand Talagrand’s Convex Distance
in a different light. For Z € Q and A C €, define

def

U@ A) ={ue{0,1}":3ad e As.t. z; # a; = u; = 1}.

In other words, @ € U(Z, A) if and only if there is some i € A such that we can transform & into
¥ by changing only coordinates for which uw; = 1. The set U(Z, A) is a way to parameterize all
“Hamming paths” from T to the set A. With this set, we can give an alternative definition of p by

Z A) = max min (&, 4).
p(7; A) Ho?||:1ﬁeU(£,A)< X

Note that we can use max and min here since U(Z, A) is a finite set, the sphere is compact and the
map & — (@, @) is continuous for any .
Next, define V (&, A) & conv (U(Z, A)).

Lemma 4. For any £ €  and A C €,

Z,A) = min |J|.
@A) = _min 7]

Note that the above minimum exists since V(Z, A) is a polytope (and is hence compact) and
the map ¥ — ||¥/]| is continuous.

Proof. Fix v* € V (&, A) with minimum |||
We can write 7 = S°F | \iiZ; where Ay, ..., A > 0and S8 N =1 and a@y,...,7 € U(Z, A).
Fix any & with ||@|| = 1. Then,

where the last inequality is due to Cauchy—Schwarz. Thus, the law of averages implies that there
is some ¢ € [k] for which (&, ;) < ||0*]]. As such, there is some @(d@) € U(Z, A) for which
(@, a(a@)) < |[[v"]|. Hence,

Z,A) = max min < max{a,u(@)) <||7*||= min [|7].
pEA) = max_min < wax (0,7(@) < 7] = v 7]

Next, we claim that (@, v*) > ||v*||? for all @ € V(&, A). Suppose this were note the case, so
(@, 7) < (1 — ¢€)||7*|* for some @ € A and some € > 0. For any ) € [0, 1], we then have

IAG + (1= 072 = A[lal|* + (1= X)?[|[5°]]* + 2A(1 = X)(a@, 7")
< Nlafl? + (1= NP7+ 201 = A (1 = |72
= N|al® + (1 = X)[[7°]|* - 2eA] 7"
< 15[ = X(2ell5]* = Allalf*).-



Now, since € > 0, we can find some A € (0,1) for which A|a||* < 2¢||o*||?. For this A, we then
have A\d@+ (1 — \)7 € V (&, A) (by convexity) and ||A\@+ (1 — \)7*||? < ||7*||?; a contradiction to the
definition of v*.

Now that we know that (@, v*) > ||7*||? for all @ € V (&, A), we can bound

- g : A N 5 - e
p(Z,A) = max min (&,4) > min ( ——, U ) > = [|["|| = min |7 O
l|@l|=1Z€U (Z,A) aeU(z,A) \ | U*|| |7+ ]| TeV(Z,A)
We will also require the following two inequalities:
1
p+(1—plel/t<= for all p € (0,1], (1)
p
min e"V/4p"A <2y for all r € (0, 1]. (2)

A€(0,1]

The first of these is easy to verify. Set f(p) = p* + p(1 — p)el/*, so f'(p) = e'/* — 2(e!/* — 1)p.
Since e!/* > 1 and e'/* <2 = 2(e/* — 1) < e'/4, we find that f'(p) is non-negative for p € [0, 1]
and so f is increasing on [0, 1]. This implies that, for p € [0, 1], we have f(p) < f(1) = 1, which
establishes (1).

The second is more tedious. We consider first the case when 0 < r < e~ By selecting
A = 0, we have miny¢g 1] e(1=N?/4p=X < ¢1/4 < 9 _ ¢=1/2 < 2 _ r_ We next consider the case when
e 1/2 < r < 1. By selecting A = 1 + 2logr (which is in [0, 1]), we have minyeo,1) e(=22/4p =X <
elog2rrflf2log7' — eflogrflogQT_ Set f(T') — eflogrflogzr7 S0 f(l) — 17 f/(l) — —1 and f”(x) —
220737187 (2]og - + 3) logxz. Now, observe that, for z € (0,1], f"(z) >0 = 2logz < -3 —
x < e 32 < e /2. Thus, f"(x) <0 for all x € [r, 1] since r > e~'/2. Now, Taylor’s theorem tells
us that there is some x € [r, 1] for which

1/2.

1) = 1)+ 7O -1+ T a2 ey TD g

Thus, since f”(z) <0 for all z € [r,1], we have f(r) <2 —r as needed to establish (2).
Additionally, we will need the following famous inequality:
Theorem 5 (Holder’s Inequality). Let X,Y be non-negative random variables. For any X € [0, 1],
E[XY' ] < (EX)NEY)
By setting A = 1/2, we recover the Cauchy—Schwarz inequality.
Proof. We begin by noting that for any a,b > 0,
log(a*d'™*) = Aloga + (1 — A)logb < log(Aa + (1 — A\)b),
where the inequality follows from the concavity of log. Therefore,
a1 < Aa+ (1= \)b.

Note that this inequality trivially holds if either a or b is 0, and so the inequality holds for all
a,b > 0. Applying this with a = X/E X and b=Y/EY then yields

X \'/ v\ X Y
i S ) —\)—
(EX> <[EY> _)\EX+(1 /\)]EY

~(E) () T erva

Multiplying both sides by (IE X )/\(]E Y)l_)‘ then yields the claim. O



Finally, we will rely on Fubini’s theorem throughout the proof, though we will not give a proof
here.

Proof of Theorem 3. We prove the claim by induction on n.
When n = 1, observe that p(z,A) =0if x € A and p(z,A) =1 if x ¢ A. Therefore, we can use
(1) to bound

. A)2
Eexp(p( ;LA) ) = Prlz € A+ (1 —Pr[z € A))e'/* < Pr[mleA]

We now suppose that n > 2, so fix a measurable A C Oy X --- x Q,. For y € ,, define
Ay L FeMx - x Q1 :(Ty) € A} and B = Uyeq, Ay Fubini’s theorem implies that B is
measurable.

We will prove that for any fixed y € Q,

I%eXp<p((ﬁ Z)7A)2> = Pr[fle B] (2 N iﬂéeeéy]]) ®)

Indeed, if this holds, then we can apply Fubini’s theorem to bound

) = IEPF[;EB] <2 a i?éiéy}]) - Pr[fle B] <2 B Eypﬁf{‘fjﬁ?y])

1 <2  Pr((#.y) € A])

2

(P((f, :Z%A)

E exp

z,y

Pr[Z € B] Pr[Z € B]
_ 1 Pr((Z,y) € 4] < _ Pr(Z,y) € A])
Pr{(Z,y) € A] Pr[%¥ € B] Pr[z € B]
1
= Pr((Z,y) € A]’

where the last inequality follows from the AM—GM inequality since (¥,y) € A = ¥ € B.

Thus, we turn our attention to proving (3). Consider (Z,y) € Q. In order to transform (Z,y)
into an element of A, we could either change Z to an element of B and then change y appropriately,
or we could leave y fixed and change Z to an element of A,. This implies that

By then taking convex combinations, we find that for any § € V(# B) and t € V(Z, Ay) and
A € [0,1], we have
(L=NF+ M, 1= )X) € V((Z,y),A).

Due to Lemma 4, we can select ||5]| = p(&, B) and ||t]| = p(&, 4,) and have

p((#,9), A)2 < (1= N5+ A1 = A)||P = (1= )5+ M) + (1 — A)?
< (L= N3P+ AP + (1 =2

— (1= N)p(@, B)® + (@, 4,)” + (1 - N7,

where the inequality in the second line follows from the fact that ¥~ ||]|? is a convex function.



We now combine the above inequality with Holder’s inequality (Theorem 5) and the induction
hypothesis to bound

z ’ — 7, B)? Z 2 )2
%QXP<W) S%exp<(1 Np(E, B)” + Ap(@, Ay)” + (1 = A) >

Finally, A, C B and so we can apply (2) to finally establish (3) as needed. O

Now that we have proved Talagrand’s inequality, we will will establish the version mentioned
at the beginning of this document.

Proof of Theorem 1. Set K = supzcq|/d@(Z)|| for the proof.

Fix r € R to be chosen later and define A & {Z < r — A}
Now, fix any Z € ) with f(Z) > r. By assumption,

dg(z) (T, A) = inf dgz) (7, 9) = inf Z ai(Z) > nf (f(Z) = f(7) =7 = (r =) =\

yeA gjeAZ ity yeA
Therefore,
. da@z) (@, A) _ A .
p(Z,A) > _— > — whenever f(Z) > r.
(@)l K

Using this fact, we can finally apply Talagrand’s inequality (Theorem 2) to bound
Pr[Z <r—\-Pr[Z > r] = Pr[# € A]-Pr[f(Z) > r] < Pr[# € A]-Pr[p(i, A) > \/K] < e N/,
Selecting r = Ml Z then yields,
e NS > PrZ <MZ - \-Pr[Z >MZ] > %Pr[z <MZ— ).

Similarly, selecting » = M Z + A then yields,

eV S pr{z < MZ]-Pr(Z > MZ + ] > %Pr[Z >MZ+ A
Thus, the union bound tells us that
Pr[|Z —MZ| > <Pr[Z <MZ -\ +Pr[Z >MZ + )] < 4e /1K, O

Talagrand’s inequality implies a weak form of McDiarmid’s inequality, which, for most of our
applications, would be perfectly sufficient.



Theorem 6 (Weak McDiarmid). Let f:  — R be a measurable function such that | f(Z) — f(y)] <
¢; when & and § differ only in the ith coordinate. Set K = /> " c?. For independent samples

X1y..., Ty with z; € Qy, define Z = f(x1,...,2,). Then,
Pr[|[Z-EZ| > )] < 4N 16K7 for every A > 8K.
Recall that McDiarmid’s inequality states that actually
Pr(|Z-EZ|> )] < 2¢ 2N/ K? for every A > 0.

Usually, the constant factors do not matter much and we consider A > K, so the weak form of
McDiarmid usually suffices for our purposes.

In order to prove Theorem 6, we begin with a fairly simple observation: If a random variable
has subGaussian tails centered at m, then E X and m are not too far apart.

Lemma 7. Let X be a random variable and fir m € R. Suppose that there exist C,c > 0 such that
Pr{|X —m|> )] < Ce™ N for every A > 0.

Then |[EX —m| < /C/ec.
Proof. Using Jensen’s inequality, we compute,

(EX —m)® = (E(X —m))® <E(X —m)? = /Oo Pr[(X —m)? > t]dt
0

:/ Pr(|X —m| > Vt]dt < / Ce “dt = / e tdt = —. O
0 0 0

c c
We can now prove that Talagrand implies the weak form of McDiarmid.

Proof of Theorem 6. For each & € Q, define &(Z) = (c1,...,c,). Then, by the assumption and the
triangle inequality,

D - @< Y o = f@O<f@+ Y al@
it Y £ i T FYs

Furthermore, supzcq||d(Z)|| = K. Thus, Talagrand’s inequality (Theorem 1) implies that
Pr[|Z-MZ| > )| < deN/AK? for every A > 0.

Thus, we can apply Lemma 7 to find that | M Z —E Z| <, /1/4;% = 4K. Now, note that A —4K >

A/2 since A > 8K, so we can additionally use the triangle inequality to bound
Pr(|Z-EZ| >N <Pr[|Z-MZ|+ MZ—-EZ| > )]
<Pr[|Z —MZ| > A —4K] < 4o~ A7 1K)?/4K
< 46—(,\/2)2/4K2 _ 4€—>\2/16K2‘ 0



