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Throughout this document, Ω1, . . . ,Ωn will be fixed probability spaces and we will consider
Ω = Ω1 × · · · × Ωn, equipped with the product σ-algebra.

Theorem 1 (Talagrand for the working mathematician). Let f : Ω → R be a measurable function.
Suppose that for every x⃗ ∈ Ω, there is another vector α⃗(x⃗) =

(
α1(x⃗), . . . , αn(x⃗)

)
∈ Rn satisfying

f(x⃗) ≤ f(y⃗) +
∑

i: xi ̸=yi

αi(x⃗) for all y⃗ ∈ Ω.

For independent samples x1, . . . , xn with xi ∈ Ωi, define Z = f(x1, . . . , xn). Then

Pr
[
|Z −MZ| ≥ λ

]
≤ 4 exp

(
−λ2

4 supx⃗∈Ω∥α⃗(x⃗)∥2

)
.

Here, MZ denotes “the” median of the random variable Z.
We additionally note that, by using −f instead of f , the condition can be replaced by

f(x⃗) ≥ f(y⃗)−
∑

i: xi ̸=yi

αi(x⃗) for all y⃗ ∈ Ω.

While the above theorem is how we will generally use Talagrand’s inequality, Talagrand’s ac-
tually inequality is more general, and we will need to spend some time setting up the relevant
defintions.

For a vector α⃗ ∈ Rn, define the (signed) distance on Ω by

dα⃗(x⃗, y⃗)
def
=

∑
i: xi ̸=yi

αi,

which is a weighted Hamming distance. Naturally, for a set A ⊆ Ω, we extend

dα⃗(x⃗, A)
def
= inf

a⃗∈A
dα⃗(x⃗, a⃗).

We then define Talagrand’s Convex Distance by

ρ(x⃗, A)
def
= sup

∥α⃗∥=1
dα⃗(x⃗, A).

Theorem 2 (Talagrand’s Inequality). Suppose that x1, . . . , xn are independent samples with xi ∈ Ωi

and set x⃗ = (x1, . . . , xn). For any measurable A ⊆ Ω,

Pr[x⃗ ∈ A] ·Pr[ρ(x⃗, A) ≥ t] ≤ e−t2/4.

We will actually prove the following:

Theorem 3. Suppose that x1, . . . , xn are independent samples with xi ∈ Ωi and set x⃗ = (x1, . . . , xn).
For any measurable A ⊆ Ω,

E exp

(
ρ(x⃗, A)2

4

)
≤ 1

Pr[x⃗ ∈ A]
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Observe that Theorem 3 implies Theorem 2. Indeed, we can use Markov’s inequality with the
random variable X = ρ(x⃗, A) to bound

Pr[X ≥ t] ≤ Pr[X2 ≥ t2] = Pr[eX
2/4 ≥ et

2/4] ≤ E eX
2/4

et2/4
≤ 1

Pr[x⃗ ∈ A] · et2/4
.

In order to actually prove Theorem 3, we will need to understand Talagrand’s Convex Distance
in a different light. For x⃗ ∈ Ω and A ⊆ Ω, define

U(x⃗, A)
def
= {u⃗ ∈ {0, 1}n : ∃a⃗ ∈ A s.t. xi ̸= ai =⇒ ui = 1}.

In other words, u⃗ ∈ U(x⃗, A) if and only if there is some y⃗ ∈ A such that we can transform x⃗ into
y⃗ by changing only coordinates for which ui = 1. The set U(x⃗, A) is a way to parameterize all
“Hamming paths” from x⃗ to the set A. With this set, we can give an alternative definition of ρ by

ρ(x⃗, A) = max
∥α⃗∥=1

min
u⃗∈U(x⃗,A)

⟨α⃗, u⃗⟩.

Note that we can use max and min here since U(x⃗, A) is a finite set, the sphere is compact and the
map α⃗ 7→ ⟨α⃗, u⃗⟩ is continuous for any u⃗.

Next, define V (x⃗, A)
def
= conv

(
U(x⃗, A)

)
.

Lemma 4. For any x⃗ ∈ Ω and A ⊆ Ω,

ρ(x⃗, A) = min
v⃗∈V (x⃗,A)

∥v⃗∥.

Note that the above minimum exists since V (x⃗, A) is a polytope (and is hence compact) and
the map v⃗ 7→ ∥v⃗∥ is continuous.

Proof. Fix v⃗∗ ∈ V (x⃗, A) with minimum ∥v⃗∗∥.
We can write v⃗∗ =

∑k
i=1 λiu⃗i where λ1, . . . , λk ≥ 0 and

∑k
i=1 λi = 1 and u⃗1, . . . , u⃗k ∈ U(x⃗, A).

Fix any α⃗ with ∥α⃗∥ = 1. Then,

k∑
i=1

λi⟨α⃗, u⃗i⟩ = ⟨α⃗, v⃗∗⟩ ≤ ∥v⃗∗∥,

where the last inequality is due to Cauchy–Schwarz. Thus, the law of averages implies that there
is some i ∈ [k] for which ⟨α⃗, u⃗i⟩ ≤ ∥v⃗∗∥. As such, there is some u⃗(α⃗) ∈ U(x⃗, A) for which
⟨α⃗, u⃗(α⃗)⟩ ≤ ∥v⃗∗∥. Hence,

ρ(x⃗, A) = max
∥α⃗∥=1

min
u⃗∈U(x⃗,A)

≤ max
∥α⃗∥=1

⟨α⃗, u⃗(α⃗)⟩ ≤ ∥v⃗∗∥ = min
v⃗∈V (x⃗,A)

∥v⃗∥.

Next, we claim that ⟨⃗a, v⃗∗⟩ ≥ ∥v⃗∗∥2 for all a⃗ ∈ V (x⃗, A). Suppose this were note the case, so
⟨⃗a, v⃗∗⟩ ≤ (1− ϵ)∥v⃗∗∥2 for some a⃗ ∈ A and some ϵ > 0. For any λ ∈ [0, 1], we then have

∥λa⃗+ (1− λ)v⃗∗∥2 = λ2∥a⃗∥2 + (1− λ)2∥v⃗∗∥2 + 2λ(1− λ)⟨⃗a, v⃗∗⟩
≤ λ2∥a⃗∥2 + (1− λ)2∥v⃗∗∥2 + 2λ(1− λ)(1− ϵ)∥v⃗∗∥2

= λ2∥a⃗∥2 + (1− λ2)∥v⃗∗∥2 − 2ϵλ∥v⃗∗∥2

≤ ∥v⃗∗∥ − λ
(
2ϵ∥v⃗∗∥2 − λ∥a⃗∥2

)
.



Now, since ϵ > 0, we can find some λ ∈ (0, 1) for which λ∥a∥2 < 2ϵ∥v⃗∗∥2. For this λ, we then
have λa⃗+ (1− λ)v⃗ ∈ V (x⃗, A) (by convexity) and ∥λa⃗+ (1− λ)v⃗∗∥2 < ∥v⃗∗∥2; a contradiction to the
definition of v⃗∗.

Now that we know that ⟨⃗a, v⃗∗⟩ ≥ ∥v⃗∗∥2 for all a⃗ ∈ V (x⃗, A), we can bound

ρ(x⃗, A) = max
∥α⃗∥=1

min
u⃗∈U(x⃗,A)

⟨α⃗, u⃗⟩ ≥ min
u⃗∈U(x⃗,A)

〈
v⃗∗

∥v⃗∗∥
, u⃗

〉
≥ ∥v⃗∗∥2

∥v⃗∗∥
= ∥v⃗∗∥ = min

v⃗∈V (x⃗,A)
∥v⃗∥.

We will also require the following two inequalities:

p+ (1− p)e1/4 ≤ 1

p
for all p ∈ (0, 1], (1)

min
λ∈[0,1]

e(1−λ)2/4r−λ ≤ 2− r for all r ∈ (0, 1]. (2)

The first of these is easy to verify. Set f(p) = p2 + p(1 − p)e1/4, so f ′(p) = e1/4 − 2(e1/4 − 1)p.
Since e1/4 ≥ 1 and e1/4 ≤ 2 =⇒ 2(e1/4 − 1) ≤ e1/4, we find that f ′(p) is non-negative for p ∈ [0, 1]
and so f is increasing on [0, 1]. This implies that, for p ∈ [0, 1], we have f(p) ≤ f(1) = 1, which
establishes (1).

The second is more tedious. We consider first the case when 0 < r ≤ e−1/2. By selecting
λ = 0, we have minλ∈[0,1] e

(1−λ)2/4r−λ ≤ e1/4 ≤ 2− e−1/2 ≤ 2− r. We next consider the case when

e−1/2 < r ≤ 1. By selecting λ = 1 + 2 log r (which is in [0, 1]), we have minλ∈[0,1] e
(1−λ)2/4r−λ ≤

elog
2 rr−1−2 log r = e− log r−log2 r. Set f(r) = e− log r−log2 r, so f(1) = 1, f ′(1) = −1 and f ′′(x) =

2x−3−log x(2 log x + 3) log x. Now, observe that, for x ∈ (0, 1], f ′′(x) > 0 =⇒ 2 log x < −3 =⇒
x < e−3/2 < e−1/2. Thus, f ′′(x) ≤ 0 for all x ∈ [r, 1] since r > e−1/2. Now, Taylor’s theorem tells
us that there is some x ∈ [r, 1] for which

f(r) = f(1) + f ′(1)(r − 1) +
f ′′(x)

2
(r − 1)2 = 2− r +

f ′′(x)

2
(r − 1)2.

Thus, since f ′′(x) ≤ 0 for all x ∈ [r, 1], we have f(r) ≤ 2− r as needed to establish (2).

Additionally, we will need the following famous inequality:

Theorem 5 (Hölder’s Inequality). Let X,Y be non-negative random variables. For any λ ∈ [0, 1],

E
[
XλY 1−λ

]
≤

(
EX

)λ(EY
)1−λ

.

By setting λ = 1/2, we recover the Cauchy–Schwarz inequality.

Proof. We begin by noting that for any a, b > 0,

log
(
aλb1−λ

)
= λ log a+ (1− λ) log b ≤ log

(
λa+ (1− λ)b

)
,

where the inequality follows from the concavity of log. Therefore,

aλb1−λ ≤ λa+ (1− λ)b.

Note that this inequality trivially holds if either a or b is 0, and so the inequality holds for all
a, b ≥ 0. Applying this with a = X/EX and b = Y/EY then yields(

X

EX

)λ( Y

EY

)1−λ

≤ λ
X

EX
+ (1− λ)

Y

EY

=⇒ E
[(

X

EX

)λ( Y

EY

)1−λ]
≤ λ+ (1− λ) = 1.

Multiplying both sides by
(
EX

)λ(EY
)1−λ

then yields the claim.



Finally, we will rely on Fubini’s theorem throughout the proof, though we will not give a proof
here.

Proof of Theorem 3. We prove the claim by induction on n.
When n = 1, observe that ρ(x,A) = 0 if x ∈ A and ρ(x,A) = 1 if x /∈ A. Therefore, we can use

(1) to bound

E exp

(
ρ(x,A)2

4

)
= Pr[x ∈ A] + (1−Pr[x ∈ A])e1/4 ≤ 1

Pr[x ∈ A]
.

We now suppose that n ≥ 2, so fix a measurable A ⊆ Ω1 × · · · × Ωn. For y ∈ Ωn, define
Ay

def
= {x⃗ ∈ Ω1 × · · · × Ωn−1 : (x⃗, y) ∈ A} and B =

⋃
y∈Ωn

Ay. Fubini’s theorem implies that B is
measurable.

We will prove that for any fixed y ∈ Ωn

E
x⃗
exp

(
ρ
(
(x⃗, y), A

)2
4

)
≤ 1

Pr[x⃗ ∈ B]

(
2− Pr[x⃗ ∈ Ay]

Pr[x⃗ ∈ B]

)
(3)

Indeed, if this holds, then we can apply Fubini’s theorem to bound

E
x⃗,y

exp

(
ρ
(
(x⃗, y), A

)2
4

)
≤ E

y

1

Pr[x⃗ ∈ B]

(
2− Pr[x⃗ ∈ Ay]

Pr[x⃗ ∈ B]

)
=

1

Pr[x⃗ ∈ B]

(
2− Ey Pr[x⃗ ∈ Ay]

Pr[x⃗ ∈ B]

)
=

1

Pr[x⃗ ∈ B]

(
2− Pr[(x⃗, y) ∈ A]

Pr[x⃗ ∈ B]

)
=

1

Pr[(x⃗, y) ∈ A]
· Pr[(x⃗, y) ∈ A]

Pr[x⃗ ∈ B]

(
2− Pr[(x⃗, y) ∈ A]

Pr[x ∈ B]

)
≤ 1

Pr[(x⃗, y) ∈ A]
,

where the last inequality follows from the AM–GM inequality since (x⃗, y) ∈ A =⇒ x⃗ ∈ B.

Thus, we turn our attention to proving (3). Consider (x⃗, y) ∈ Ω. In order to transform (x⃗, y)
into an element of A, we could either change x⃗ to an element of B and then change y appropriately,
or we could leave y fixed and change x⃗ to an element of Ay. This implies that

s⃗ ∈ U(x⃗, B) =⇒ (s⃗, 1) ∈ U
(
(x⃗, y), A

)
,

t⃗ ∈ U(x⃗, Ay) =⇒ (s⃗, 0) ∈ U
(
(x⃗, y), A

)
.

By then taking convex combinations, we find that for any s⃗ ∈ V (x⃗, B) and t⃗ ∈ V (x⃗, Ay) and
λ ∈ [0, 1], we have (

(1− λ)s⃗+ λt⃗, 1− λ
)
∈ V

(
(x⃗, y), A

)
.

Due to Lemma 4, we can select ∥s⃗∥ = ρ(x⃗, B) and ∥t⃗∥ = ρ(x⃗, Ay) and have

ρ
(
(x⃗, y), A

)2 ≤ ∥∥((1− λ)s⃗+ λt⃗, 1− λ
)∥∥2 = ∥(1− λ)s⃗+ λt⃗∥2 + (1− λ)2

≤ (1− λ)∥s⃗∥2 + λ∥t⃗∥2 + (1− λ)2

= (1− λ)ρ(x⃗, B)2 + λρ(x⃗, Ay)
2 + (1− λ)2,

where the inequality in the second line follows from the fact that v⃗ 7→ ∥v⃗∥2 is a convex function.



We now combine the above inequality with Hölder’s inequality (Theorem 5) and the induction
hypothesis to bound

E
x⃗
exp

(
ρ
(
(x⃗, y), A

)2
4

)
≤ E

x⃗
exp

(
(1− λ)ρ(x⃗, B)2 + λρ(x⃗, Ay)

2 + (1− λ)2

4

)
= e(1−λ)2/4 E

x⃗

[(
eρ(x⃗,B)2/4

)1−λ(
eρ(x⃗,Ay)2/4

)λ]
≤ e(1−λ)2/4

(
E
x⃗
eρ(x⃗,B)2/4

)1−λ(
E
x⃗
eρ(x⃗,Ay)2/4

)λ

≤ e(1−λ)2/4

(
1

Pr[x⃗ ∈ B]

)1−λ( 1

Pr[x⃗ ∈ Ay]

)λ

=
1

Pr[x⃗ ∈ B]
· e(1−λ)2/4

(
Pr[x⃗ ∈ Ay]

Pr[x⃗ ∈ B]

)−λ

.

Finally, Ay ⊆ B and so we can apply (2) to finally establish (3) as needed.

Now that we have proved Talagrand’s inequality, we will will establish the version mentioned
at the beginning of this document.

Proof of Theorem 1. Set K = supx⃗∈Ω∥α⃗(x⃗)∥ for the proof.

Fix r ∈ R to be chosen later and define A
def
= {Z ≤ r − λ}.

Now, fix any x⃗ ∈ Ω with f(x⃗) ≥ r. By assumption,

dα⃗(x⃗)(x⃗, A) = inf
y⃗∈A

dα⃗(x⃗)(x⃗, y⃗) = inf
y⃗∈A

∑
i: xi ̸=yi

αi(x⃗) ≥ inf
y⃗∈A

(
f(x⃗)− f(y⃗)

)
≥ r − (r − λ) = λ.

Therefore,

ρ(x⃗, A) ≥
dα⃗(x⃗)(x⃗, A)

∥α⃗(x⃗)∥
≥ λ

K
whenever f(x⃗) ≥ r.

Using this fact, we can finally apply Talagrand’s inequality (Theorem 2) to bound

Pr[Z ≤ r−λ] ·Pr[Z ≥ r] = Pr[x⃗ ∈ A] ·Pr[f(x⃗) ≥ r] ≤ Pr[x⃗ ∈ A] ·Pr[ρ(x⃗, A) ≥ λ/K] ≤ e−λ2/4K2
.

Selecting r = MZ then yields,

e−λ2/4K2 ≥ Pr[Z ≤ MZ − λ] ·Pr[Z ≥ MZ] ≥ 1

2
Pr[Z ≤ MZ − λ].

Similarly, selecting r = MZ + λ then yields,

e−λ2/4K2 ≥ Pr[Z ≤ MZ] ·Pr[Z ≥ MZ + λ] ≥ 1

2
Pr[Z ≥ MZ + λ].

Thus, the union bound tells us that

Pr
[
|Z −MZ| ≥ λ

]
≤ Pr[Z ≤ MZ − λ] +Pr[Z ≥ MZ + λ] ≤ 4e−λ2/4K2

.

Talagrand’s inequality implies a weak form of McDiarmid’s inequality, which, for most of our
applications, would be perfectly sufficient.



Theorem 6 (Weak McDiarmid). Let f : Ω → R be a measurable function such that |f(x⃗)−f(y⃗)| ≤
ci when x⃗ and y⃗ differ only in the ith coordinate. Set K =

√∑n
i=1 c

2
i . For independent samples

x1, . . . , xn with xi ∈ Ωi, define Z = f(x1, . . . , xn). Then,

Pr
[
|Z − EZ| ≥ λ

]
≤ 4e−λ2/16K2

for every λ > 8K.

Recall that McDiarmid’s inequality states that actually

Pr
[
|Z − EZ| ≥ λ

]
≤ 2e−2λ2/K2

for every λ > 0.

Usually, the constant factors do not matter much and we consider λ ≫ K, so the weak form of
McDiarmid usually suffices for our purposes.

In order to prove Theorem 6, we begin with a fairly simple observation: If a random variable
has subGaussian tails centered at m, then EX and m are not too far apart.

Lemma 7. Let X be a random variable and fix m ∈ R. Suppose that there exist C, c > 0 such that

Pr
[
|X −m| ≥ λ

]
≤ Ce−cλ2

for every λ > 0.

Then |EX −m| ≤
√
C/c.

Proof. Using Jensen’s inequality, we compute,

(
EX −m

)2
=

(
E(X −m)

)2 ≤ E(X −m)2 =

∫ ∞

0
Pr[(X −m)2 ≥ t]dt

=

∫ ∞

0
Pr

[
|X −m| ≥

√
t
]
dt ≤

∫ ∞

0
Ce−ctdt =

C

c

∫ ∞

0
e−tdt =

C

c
.

We can now prove that Talagrand implies the weak form of McDiarmid.

Proof of Theorem 6. For each x⃗ ∈ Ω, define α⃗(x⃗) = (c1, . . . , cn). Then, by the assumption and the
triangle inequality,

|f(y⃗)− f(x⃗)| ≤
∑

i: yi ̸=xi

ci =⇒ f(x⃗) ≤ f(y⃗) +
∑

i: xi ̸=yi

αi(x⃗).

Furthermore, supx⃗∈Ω∥α⃗(x⃗)∥ = K. Thus, Talagrand’s inequality (Theorem 1) implies that

Pr
[
|Z −MZ| ≥ λ

]
≤ 4e−λ2/4K2

for every λ > 0.

Thus, we can apply Lemma 7 to find that |MZ −EZ| ≤
√

4
1/4K2 = 4K. Now, note that λ− 4K ≥

λ/2 since λ ≥ 8K, so we can additionally use the triangle inequality to bound

Pr
[
|Z − EZ| ≥ λ

]
≤ Pr

[
|Z −MZ|+ |MZ − EZ| ≥ λ

]
≤ Pr

[
|Z −MZ| > λ− 4K

]
≤ 4e−(λ−4K)2/4K2

≤ 4e−(λ/2)2/4K2
= 4e−λ2/16K2

.


