HW #6

Solutions must be typeset in IATEX. Collaboration and use of external sources are permitted, but must be fully acknowledged and cited. Any collaboration should involve only discussion; all writing **must** be done individually. You are free to use the result from any problem on this (or previous) assignment as a part of your solution to a different problem even if you have not solved the former problem.

Problem 1 (Compare to HW4#1). Suppose that G_1, \ldots, G_k are all graphs on a common vertex-set V, where G_i has m_i many edges and maximum degree Δ_i . Prove that there exists a common bipartition of V such that each G_i has at least $\frac{m_i}{2} - C\sqrt{\Delta_i m_i \log k}$ many edges crossing the bipartition. Here, C > 0 is some universal constant.

Problem 2. For a permutation $\pi \in S_n$, an *inversion* is an ordered pair $(i, j) \in [n]^2$ with i < j and $\pi(i) > \pi(j)$. Let $X(\pi)$ denote the number of inversions in the permutation π . Consider sampling a uniformly random permutation from S_n . Prove that there is a constant C > 0 such that, for any $\lambda > 0$,

$$\mathbf{Pr}\left[\left|X - \frac{1}{2}\binom{n}{2}\right| \ge \lambda n^{3/2}\right] \le 2e^{-C\lambda^2}.$$

Note: McDiarmid's inequality does not (naïvely) apply to this situation.

Hint: One way to bound consecutive differences in the natural Doob martingale: for a permutation $\pi \in S_n$ and a number $k \in [n]$, consider the permutation $\tau_{\pi,k} \circ \pi$ where, in cycle form, $\tau_{\pi,k} = (\pi(k) \ t)$ with t chosen uniformly at random from $[n] \setminus {\pi(1), \ldots, \pi(k-1)}$.

Problem 3. Fix a probability space $(\Omega, \Sigma, \mathbf{Pr})$ and let $\mathcal{G} \subseteq \Sigma$ be a sub- σ -algebra. The monotone convergence theorem states that if X_1, X_2, \ldots are non-negative random variables, then

$$\mathbb{E}\left[\sum_{n=1}^{\infty} X_n \middle| \mathcal{G}\right] = \sum_{n=1}^{\infty} \mathbb{E}[X_n \middle| \mathcal{G}] \quad \text{a.s.}$$

Use the monotone convergence theorem to prove the following. If N is a \mathcal{G} -measurable random variable taking values in $\mathbb{Z}_{>0}$, then:

A. For any non-negative random variables X_1, X_2, \ldots , we have

$$\mathbb{E}\left[\sum_{n=1}^{N} X_n \middle| \mathcal{G}\right] = \sum_{n=1}^{N} \mathbb{E}[X_n \middle| \mathcal{G}] \quad \text{a.s.}$$

B. For any non-negative, independent random variables X_1, X_2, \ldots , we have

$$\mathbb{E}\left[\prod_{n=1}^{N} X_{n} \middle| \mathcal{G}\right] = \prod_{n=1}^{N} \mathbb{E}[X_{n} \middle| \mathcal{G}] \quad \text{a.s.}$$

Hint: If N is \mathcal{G} -measurable, then so are $\mathbf{1}[N = n]$ and $\mathbf{1}[N \ge n]$ for any $n \in \mathbb{Z}_{\ge 0}$.

Problem 4 (Galton–Watson branching process). Let X be a random variable taking values in $\mathbb{Z}_{\geq 0}$; set $\mu \stackrel{\text{def}}{=} \mathbb{E} X$ and $\sigma^2 \stackrel{\text{def}}{=} \mathbf{Var} X$ and suppose that both μ and σ are finite. For $n, k \in \mathbb{Z}_{\geq 1}$, let $X_{n,k}$ be an independent copy of X. Define the sequence of random variables

$$Z_0 \stackrel{\text{def}}{=} 1, \quad \text{and} \quad Z_n \stackrel{\text{def}}{=} \sum_{k=1}^{Z_{n-1}} X_{n,k},$$

and consider the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots$ where $\mathcal{F}_n \stackrel{\text{def}}{=} \sigma(X_{i,k} : i \in [n], k \in \mathbb{Z}_{\geq 1})$. The random variable Z_n can be interpreted as the size of the *n*th generation when the *k*th individual in the (n-1)th generation has $X_{n,k}$ many offspring.

A. Define the random variables

$$A_n \stackrel{ ext{def}}{=} rac{Z_n}{\mu^n} \qquad ext{and} \qquad B_n \stackrel{ ext{def}}{=} A_n^2 - rac{\sigma^2}{\mu^{n+1}} \sum_{k=0}^{n-1} \mu^k A_n.$$

- (a) Prove that both A_0, A_1, \ldots and B_0, B_1, \ldots are martingales with respect to the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots$.
- (b) Compute $\mathbb{E} Z_n$ and $\operatorname{Var} Z_n$.
- B. For a non-negative random variable Y, define the function $\varphi_Y(t) \stackrel{\text{def}}{=} \mathbb{E} t^Y$ (where we interpret $0^0 = 1$).¹

Prove that $\varphi_{Z_n} = \varphi_X^{(n)}$, where $f^{(n)}$ denotes the *n*-fold composition of the function f with itself.

- C. Define $\zeta \stackrel{\text{def}}{=} \lim_{n \to \infty} \mathbf{Pr}[Z_n = 0]$, which is the probability that the population eventually dies out.
 - (a) Prove that ζ is the smallest non-negative number for which $\varphi_X(\zeta) = \zeta$. Hint: $\varphi_Y(0) = ?$
 - (b) Suppose that $\mathbf{Pr}[X=0] > 0$. Prove that $\zeta = 1$ if $\mu \leq 1$ and that $\zeta < 1$ if $\mu > 1$. Hint: Consider the tangent line to $\varphi_X(t)$ at t = 1.
 - (c) **Bonus:** Suppose that $\mathbf{Pr}[X=0] > 0$.
 - i. Prove that if $\mu < 1$, then $\mathbf{Pr}[Z_n = 0] = 1 \Theta(\mu^n)$.
 - ii. Prove that if $\mu = 1$, then $\mathbf{Pr}[Z_n = 0] = 1 \Theta(1/n)$.

¹If Y takes values in $\mathbb{Z}_{\geq 0}$, then $\varphi_Y(t) = \sum_{n=0}^{\infty} \mathbf{Pr}[Y=n] \cdot t^n$. Therefore, φ_Y is an analytic, increasing function from [0,1] to [0,1]. Feel free to use this fact.