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To choose one sock from each of infinitely many pairs of socks requires the Axiom of
Choice, but for shoes the Axiom is not needed. —Bertrand Russell

The Axiom of Choice is obviously true; the well-ordering principle is obviously false;
and who can tell about Zorn’s Lemma? —Jerry Bona

In this document, we lay out different forms for the Axiom of Choice. Throughout, we will be
working over ZF, but we forgo much of the formality for the sake of understandability.

1 The Axiom of Choice

Let Ω be a set. A choice function on Ω is any function f : 2Ω \ {∅} → Ω with the property that
f(X) ∈ X for all X ∈ 2Ω \ {∅}.

Axiom 1 (Axiom of Choice (version 1)). Every non-empty set admits a choice function.

For a non-empty set I and sets Xi for each i ∈ I, the Cartesian product
∏

i∈I Xi is defined to
be the collection of all functions f : I →

⋃
i∈I Xi satisfying f(i) ∈ Xi for all i ∈ I.

Axiom 2 (Axiom of Choice (version 2)). If I is a non-empty set and Xi is non-empty for each
i ∈ I, then

∏
i∈I Xi is also non-empty.

It is easy to see that these two axioms are equivalent.

Proof. Axiom 2 =⇒ Axiom 1. Set I = 2Ω \ {∅}, which is non-empty since Ω is non-empty. Now,
for each X ∈ I, X is non-empty by design and so

∏
X∈I X is non-empty by assumption. Of course,

an element of
∏

X∈I X is precisely a choice function on Ω.

Proof. Axiom 1 =⇒ Axiom 2. Set Ω =
⋃

i∈I Xi and let f be a choice function on Ω. Since each Xi

is non-empty, we know that Xi ∈ 2Ω \ {∅} and so f(Xi) ∈ Xi for each i ∈ I. Now, considering the
function g : I → 2Ω \ {∅} defined by g(i) = Xi, we see that f ◦ g ∈

∏
i∈I Xi and so the product is

non-empty.

When trying to establish Axiom 2, it suffices to consider only the case when the Xi’s are
pairwise disjoint. To see why, we can consider the coproduct of the sets

∐
i∈I Xi =

⋃
i∈I(Xi ×{i}).

Naturally, the sets Xi×{i} are pairwise disjoint no matter what and there is the natural projection
map

∐
i∈I Xi →

⋃
i∈I Xi given by (x, i) 7→ x.

The Axiom of Choice is a fairly natural statement: given a collection of non-empty sets, you
can simultaneously pick one element from each one, but it does lead to some perhaps unintuitive
consequences, such as the Banach–Tarski paradox. However, it is equivalent to many statements
which we would like to be true. For instance:

Axiom 3 (Right-Inverses). Every surjective function has a right-inverse.

In particular, this implies that quotients are always smaller, e.g. |R/Q| ≤ |R|.1 Without the
Axiom of Choice, this may be false.

1As far as I can tell, it is unknown whether the fact that quotients are always smaller is equivalent to the Axiom
of Choice over ZF. That is, it is unknown whether the proposition “If there is a surjection from A to B, then there is
an injection from B to A” implies the Axiom of Choice. However, there are models consistent with ZF in which the
quoted statement is false.
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Proof. Axiom of Choice =⇒ Right-Inverses. Let f : A → B be a surjection, so f−1(b) is non-empty
for each b ∈ B. Thus, the Axiom of Choice allows us to locate some g ∈

∏
b∈B f−1(b). Now,⋃

b∈B f−1(b) ⊆ A, so g : B → A and g(b) ∈ f−1(b) for every b ∈ B. Therefore, (f ◦ g)(b) = b for
every b ∈ B, i.e. g is a right-inverse of f .

Proof. Right-Inverses =⇒ Axiom of Choice. Let Xi be a non-empty set for every i ∈ I. As dis-
cussed above, we may suppose that the Xi’s are pairwise disjoint. Thus, the map f :

⋃
i∈I Xi → I

given by f(x) = i if x ∈ Xi is well-defined. Furthermore, since each Xi is non-empty, f is sur-
jective since f−1(i) = Xi. Thus, f admits a right-inverse g. Of course, g : I →

⋃
i∈I Xi and

(f ◦ g)(i) = i =⇒ g(i) ∈ f−1(i) = Xi; that is g ∈
∏

i∈I Xi.

2 Zorn’s Lemma

A relation ⪯ on Ω is called a partial order if it is

• Reflexive: x ⪯ x,

• Anti-symmetric: x ⪯ y ∧ y ⪯ x =⇒ x = y,

• Transitive: x ⪯ y ∧ y ⪯ z =⇒ x ⪯ z.

The pair (Ω,⪯) is called a partially-ordered set or poset. Note that (X,⪯) is also a poset for any
X ⊆ Ω.

A partial order is said to be a total order if either x ⪯ y or y ⪯ x for every x, y ∈ Ω. A subset
C ⊆ Ω is called a chain if (C,⪯) is totally ordered. For a subset X ⊆ Ω, an element b ∈ Ω is said
to be an upper-bound on X if x ⪯ b for all x ∈ X. An element m ∈ Ω is said to be maximal if
m ⪯ x =⇒ m = x; that is, there is no element strictly larger than m. Note that a poset may have
many maximal elements.

Axiom 4 (Zorn’s Lemma). Let Ω be a non-empty poset. If every chain in Ω admits an upper-bound,
then Ω has a maximal element.

Zorn’s Lemma is one of the most useful versions of the Axiom of Choice and is used to prove
the existence of many mathematical objects.

Zorn’s Lemma =⇒ Axiom of Choice. We build a poset (P,⪯) where the elements of P are pairs
(A, f) where A ⊆ I is non-empty and f ∈

∏
a∈AXa, and (A, f) ⪯ (B, g) if A ⊆ B and g|A = f .

Note that P is non-empty since
∏

a∈AXa is clearly non-empty whenever A is non-empty and finite.
Consider a non-empty chain C ⊆ P . Write A =

⋃
C:(C,fC)∈C C and define f : A →

⋃
a∈AXa

by f(a) = fC(a) whenever a ∈ C for some C ∈ C. Note that f is well-defined since C is a chain.
Furthermore, it is easy to see that f ∈

∏
a∈AXa by construction and that (C, fC) ⪯ (A, f) for

every (C, fC) ∈ C. In other words, (A, f) is an upper-bound on C.
Thus, every chain in P admits an upper-bound and so Zorn’s lemma implies that P contains a

maximal element (A, f). We claim that A = I, which will establish the claim. If not, then there
is some i ∈ I \ A. Since Xi ̸= ∅, we can fix some element xi ∈ Xi. Define B = A ∪ {i} and the
function g : B →

⋃
b∈B Xb by g(a) = f(a) if a ∈ A and g(i) = xi. Clearly g ∈

∏
b∈B Xb and so

(A, f) ⪯ (B, g); this contradicts the maximality of (A, f).

Axiom of Choice =⇒ Zorn’s Lemma. Let (P,⪯) be a non-empty poset in which every chain has an
upper bound. Suppose for the sake of contradiction that P does not contain a maximal element.



Write x ≺ y if x ⪯ y and x ̸= y (that is, y is strictly larger than x). For a subset X ⊆ P , define

U(X)
def
= {u ∈ Ω : x ≺ u for all x ∈ X}; that is U(X) is the set of all strict upper-bounds on X.

We claim that U(C) ̸= ∅ for any chain C ⊆ P .
Indeed, let u ∈ P be an upper-bound for C (which exists by assumption). If C has no maximum

element, then u /∈ C and so u ∈ U(C) by necessity. Thus, we may suppose that u is a maximum
element of C. Now, since P does not contain any maximal element, there must be some m ∈ P
with u ≺ m. Thus, x ⪯ u ≺ m for all x ∈ C, which implies that m ∈ U(C). Thus, U(C) is indeed
non-empty for every non-empty chain C ⊆ P as claimed.

Now, let f : 2P \ {∅} → P be a choice function on P given to us by the Axiom of Choice. For

any chain C ⊆ P , define g(C)
def
= f

(
U(C)

)
, which is valid since U(C) ∈ 2P is non-empty by the

previous paragraph.

A set A ⊆ P is said to be an attempt if

• (A,⪯) is well-ordered (see Section 3 for the definition), and

• For every proper initial segment C ⊆ A (meaning C ̸= A and c ⪯ a for every c ∈ C and
a ∈ A \ C), we have min(A \ C) = g(C).

Observe that ∅ is an attempt.
We claim that if A,A′ are two attempts, then either A ⊆ A′ or A′ ⊆ A. Suppose to the contrary

that neither of these hold, in which case we can define z = min(A \A′) and z′ = min(A′ \A). Since
z ̸= z′, we cannot have both z ⪯ z′ and z′ ⪯ z; without loss of generality, suppose that z′ ̸⪯ z.
Define C = {a ∈ A : a ≺ z}. Clearly C is a proper initial segment of A; we claim that C is also a
proper initial segment of A′. To see this, first not that C ⊆ A′ by the definition of z. Furthermore,
if C = A′, then A′ ⊆ A as needed, so we may suppose that C is a proper subset of A′. Thus, if C is
not a proper initial segment of A′, then there is some c ∈ C and a′ ∈ A′ \C with a′ ≺ c. But then,
since z ∈ U(C) and C ⊆ A, we must have z′ = min(A′ \A) ⪯ min(A′ \C) ⪯ c ≺ z; a contradiction
to the assumption that z′ ̸⪯ z. Thus, C is also a proper initial segment of A′. As such, since both
A,A′ are attempts, g(C) = min(A′ \ C) and g(C) = min(A \ C). However, min(A \ C) = z and so
z = g(C) = min(A′ \ C) ∈ A′; a contradiction to the fact that z = min(A \ A′) =⇒ z /∈ A′. This
final contradiction establishes the fact that either A ⊆ A′ or A′ ⊆ A.

A consequence of the previous paragraph is that if A is any non-empty collection of attempts,
then the union

⋃
A is also an attempt. Therefore, let A be the collection of all attempts and set

A =
⋃

A, so A is also an attempt! Since A is an attempt, it is a chain in P , and so g(A) is defined
and g(A) = f

(
U(A)

)
∈ U(A). Thus, A ∪ {g(A)} is also an attempt and A ∪ {g(A)} /∈ A since

A ∪ {g(A)} is a proper superset of A; a contradiction to the definition of A.

3 Well-Ordering Prinicple

A total order is said to be a well order if every non-empty set has a minimum element; that is, for
every non-empty S ⊆ Ω, there is m ∈ S such that m ⪯ s for all s ∈ S.

Axiom 5 (Well-Ordering Principle). Every set admits a well order.

If (Ω,≤) is a well-ordered set, then it makes sense to define minS for any non-empty subset
S ⊆ Ω.

Proof. Well-Ordering Principle =⇒ Axiom of Choice. Fix any well order of Ω. The function f : 2Ω\
{∅} → Ω defined by f(S) = minS is a choice function.



Proof. Zorn’s Lemma =⇒ Well-Ordering Principle. We build a poset (P,⪯) where P is the set of
all pairs (A,≤A) where A ⊆ Ω and ≤A is a well-order of A, and (A,≤A) ⪯ (B,≤B) if (A,≤A) is an
initial segment of (B,≤B), meaning that A ⊆ B, ≤A and ≤B agree on A, and a ≤B b for all a ∈ A
and all b ∈ B \A. Note that P is non-empty since a singleton is trivially well-ordered.

Consider a non-empty chain C ⊆ P . Write A =
⋃

C:(C,≤C)∈C C and define the order ≤ on A by
x ≤ y if x ≤C y for some (C,≤C) ∈ C. Note that ≤ is well-defined since C is a chain. We claim that
(A,≤) is well-ordered. Indeed, consider any non-empty S ⊆ A; then there is some (C,≤C) ∈ C such
that C ∩ S is also non-empty. Since C is a chain, we see that min(C ∩ S) = minS, the former of
which exists since (C,≤C) is well-ordered. Therefore, (C,≤C) ⪯ (C ′,≤) for all C ∈ C; thus (A,≤)
is an upper-bound on C.

Thus, every chain in P admits an upper-bound and so Zorn’s Lemma implies that P contains
a maximal element (A,≤A). We claim that A = Ω, which will establish the claim. If not, then
there is some x ∈ Ω \A. Consider the set B = A∪ {x} and the order ≤B which agrees with ≤A on
A and has a ≤B x for all a ∈ A. Clearly ≤B is a well-order on B and so (A,≤A) ⪯ (B,≤B); this
contradicts the maximality of (A,≤A).

4 Tychonoff’s Theorem

Let Ω be a set. A topology on Ω is a family T ⊆ 2Ω with the following properties:

• ∅,Ω ∈ T , and

• For any U ⊆ T , also
⋃
U ∈ T , and

• For any finite U ⊆ T , also
⋂
U ∈ T .

It is easy to check that the intersection of any collection of topologies is also a topology. Thus, for
any family F ⊆ 2Ω, we can define τ(F) to be the intersection of all topologies containing F , which
is called the topology generated by F .

A topological space is a pair (Ω, T ) where T is a topology on Ω. For a topological space (Ω, T ),
we say that a set S ⊆ Ω is open if S ∈ T and that S is closed if Ω \ S ∈ T .

For a subset S ⊆ Ω, an open cover of S is a subset U ⊆ T such that S ⊆
⋃
U . The set S is

said to be compact if every open cover of S has a finite-subcover; that is, if U is an open cover of
S, then there is some finite U ′ ⊆ U with S ⊆

⋃
U ′. The space itself is said to be compact if its

ground-set Ω is compact.

Let I be a non-empty set and Xi be a topological space for every i ∈ I. For each i ∈ I,
define the projection map πi :

∏
j∈I Xj → Xi by πi(f) = f(i); note that πi is well-defined even if∏

i∈I Xi = ∅. We define the product topology to be the topology on
∏

i∈I Xi generated by the sets
{π−1

i (Ui) : i ∈ I, Ui ⊆ Xi is open}. Equivalently, the product topology is the smallest topology on∏
i∈I Xi under which each πi is continuous.
It is important to note that the product topology is generally much smaller than the so-called

“box topology”, which is generated by {
∏

i∈I Ui : Ui ⊆ Xi is open for every i ∈ I}, though they do
coincide when I is finite.

Axiom 6 (Tychonoff’s Theorem). Let I be any non-empty set. If Xi is a compact space for every
i ∈ I, then

∏
i∈I Xi is compact under the product topology.

It will be much more convenient to work with an equivalent definition of compactness besides
the standard open-cover definition.



Definition 7 (FIP). A set family F is said to have the Finite Intersection Property (FIP) if⋂
F ′ ̸= ∅ for any finite F ′ ⊆ F .

Exercise 8 (FIP formulation of compactness). A topological space X is compact if and only if
whenever C ⊆ X is a collection of closed subsets which have the FIP, then

⋂
C ̸= ∅.

We now prove that Tychonoff implies Choice.

Proof. Tychonoff’s Theorem =⇒ Axiom of Choice. Suppose that I is non-empty and each set Xi

is also non-empty for each i ∈ I. Without loss of generality, we may suppose that I ∩
⋃

i∈I Xi = ∅.
Define Ai = Xi ∪ {i} for each i ∈ I. We build a topological space from each Ai by defining the
open sets to be ∅, {i} and Ai. Obviously, each of these spaces is compact.

Consider the projection maps πi :
∏

j∈I Aj → Ai given by πi(f) = f(i) for each i ∈ I. Observe
that ∏

i∈I
Xi =

⋂
i∈I

π−1
i (Xi).

Now, for each i ∈ I, we see that Xi is a closed subset of Ai and so π−1
i (Xi) is a closed subset of∏

i∈I Ai since πi is continuous. It thus suffices to prove that the family {π−1
i (Xi) : i ∈ I} has the

FIP since
∏

i∈I Ai is compact by Tychonoff’s Theorem. Consider any finite, non-empty I ′ ⊆ I.
Since each Xi is non-empty, the product

∏
i∈I′ Xi is clearly non-empty (it corresponds to tuples

and can be proved to be non-empty by induction), so fix any f ′ ∈
∏

i∈I′ Xi. Define the function
f ∈

∏
i∈I Ai by f(i) = f ′(i) if i ∈ I ′ and otherwise f(i) = i. Certainly, πi(f) ∈ Xi for each i ∈ I ′

and so f ∈
⋂

i∈I′ π
−1
i (Xi). Thus, {π−1

i (Xi) : i ∈ I} has the FIP as needed.

Our next goal is to prove that Choice implies Tychonoff. We begin with an intermediate step.

Lemma 9 (Alexander Subbase Theorem). Let (X, T ) be a topological space and suppose that
T = τ(S). If every cover of X using only sets in S has a finite subcover, then (X, T ) is compact.

Technically, we will require the Axiom of Choice to prove this lemma, but this lemma is not
actually equivalent to Choice. It is instead equivalent to the weaker “ultrafilter lemma”, which we
will not discuss here, but can be used to give an alternative proof of Tychonoff.

Proof. Zorn’s Lemma =⇒ Alexander Subbase Theorem. Suppose for the sake of contradiction that
(X, T ) is not compact. Let P be the poset whose elements are all open covers of X which do not
have a finite subcover, ordered by inclusion. Since X is not compact, P is non-empty. It is easy to
see that if C ⊆ P is a chain, then

⋃
C ∈ P as well, and so every chain in P has an upper-bound.

Thus, Zorn’s Lemma allows us to find a maximal element M of P .
Now, it cannot be the case that M∩ S is a cover of X or else it would have a finite subcover

by assumption. Thus, there is some x ∈ X \
⋃
(M∩ S). However, since M is a cover of X, there

must be some U ∈ M with x ∈ U . Now, since T = τ(S) and U ∈ T , we can locate S1, . . . , Sn ∈ S
(n finite) satisfying x ∈ S1 ∩ · · · ∩ Sn ⊆ U (exercise).

Fix i ∈ [n]. Since x /∈
⋃
(M ∩ S), it must be the case that Si /∈ M. But then {Si} ∪ M is

an open cover of X which strictly contains M and so this must have a finite subcover due to the
maximality of M . In particular, there is some finite Mi ⊆ M such that {Si}∪Mi is a cover of X.

Define M′ =
⋃n

i=1Mi, which is a finite subset of M, so {Si}∪M′ is a cover of X for all i ∈ [n].
In particular, X \

⋃
M′ ⊆ S1 ∩ · · · ∩ Sn. However, S1 ∩ · · · ∩ Sn ⊆ U and so {U} ∪M′ is a cover of

X; a contradiction since {U} ∪M′ is a finite subset of M.

We can now prove Tychonoff’s Theorem.



Proof. Axiom of Choice =⇒ Tychonoff’s Theorem. If any of theXi’s are empty, then
∏

i∈I Xi = ∅,
which is trivially compact, so we may suppose that each Xi is non-empty.

Consider the projections πi :
∏

j∈I Xj → Xi for each i ∈ I, where πi(f) = f(i). The product

topology is generated by S def
= {π−1

i (Si) : i ∈ I, Si ⊆ Xi open}. Thus, due to the Alexander
Subbase Theorem (which is true since Choice =⇒ Zorn and we are assuming Choice), it suffices to
prove that every cover of

∏
i∈I Xi using only elements of S has a finite subcover.

Suppose for the sake of contradiction that we can locate for each i ∈ I, a collection of open
sets Ui of Xi such that U def

= {π−1
i (Ui) : i ∈ I, Ui ∈ Ui} covers X yet has no finite subcover. We

claim that Ui cannot be a cover of Xi for any i ∈ I. Indeed, fix any i ∈ I and suppose that Ui

covers Xi. Since Xi is compact, there must then be a finite subcover U ′
i ⊆ Ui of Xi. But then

{π−1
i (Ui) : Ui ∈ U ′

i} is a finite subset of U which covers
∏

i∈I Xi; a contradiction.
For each i ∈ I, we can define Ai = Xi \

⋃
Ui. Since each Ai is non-empty by the previous

paragraph, we can find some f ∈
∏

i∈I Ai ⊆
∏

i∈I Xi due to the Axiom of Choice. Note that
πi(f) ∈ Ai /∈

⋃
Ui for every i ∈ I, and so f is not covered by U ; a contradiction. This concludes

the proof.

5 Vector Space Bases

Let V be a vector space over a field F. For S ⊆ V , the span of S is

span(S)
def
=

{ n∑
i=1

xisi : n ∈ N, x1, . . . , xn ∈ F, s1, . . . , sn ∈ S

}
;

that is, all finite linear combinations of elements of S. The set S is said to be linearly independent
if s /∈ span(S \ {s}) for every s ∈ S. A basis of V is a linearly independent subset S ⊆ V with
span(S) = V .

Axiom 10 (Vector Space Bases). Every vector space has a basis.

Proof. Zorn’s Lemma =⇒ Vector Space Bases. Let P be the set of all linearly independent subsets
of V ordered under inclusion. Naturally P is non-empty since the empty set is linearly independent.

Now, consider a non-empty chain C ⊆ P ; we claim that
⋃
C is also linearly independent, and

so would be an upper-bound on C. Indeed, fix any s ∈
⋃
C and suppose that s ∈ span(

⋃
C \ {s}).

Thus, we can write s =
∑n

i=1 xisi for some x1, . . . , xn ∈ F and s1, . . . , sn ∈
⋃
C \ {s}. Since C

is a chain, we can thus locate some C ∈ C with s, s1, . . . , sn ∈ C; however, then we would have
s ∈ span(C \ {s}), which contradicts the linear independence of C.

Thus, every chain in P admits an upper-bound and so Zorn’s Lemma implies that P contains a
maximal element B. We claim that B is a basis of V . By construction, B is linearly independent,
so we mus simply show that span(B) = V . If not, then there is some v ∈ V with v /∈ span(B);
however, this would mean that B ∪ {v} ∈ P , which contradicts the maximality of B.

In order to establish that Axiom 10 implies the Axiom of Choice, we will need to pass through
an intermediary statement, which is also equivalent to the Axiom of Choice, although it appears
to be much weaker.

Axiom 11 (Axiom of Multi-Choice). If I is a non-empty set and Xi is non-empty for each i ∈ I,
then there exist sets Ai ⊆ Xi where each Ai is non-empty and finite.



It is trivial that Axiom of Choice =⇒ Axiom of Multi-Choice. The other direction is pretty
non-trivial and involves crucially the Axiom of Regularity/Foundation of ZF2. For this reason, we’ll
omit the proof that Axiom of Multi-Choice =⇒ Axiom of Choice.

Proof. Vector Space Bases =⇒ Axiom of Multi-Choice. Let I be a non-empty set and Xi be non-
empty for each i ∈ I. Without loss of generality, we may suppose that the Xi’s are pairwise disjoint.
Set X =

⋃
i∈I Xi.

Begin by considering the polynomial ring F[X]. For i ∈ I and a monomial p ∈ F[X], define
the i-degree of p to be the sum of the exponents of the members of Xi. We say that a polynomial
p ∈ F[X] is i-homogeneous of degree d if every monomial of p has i-degree d.

We next pass to the field of fractions F(X) of F[X], which is the collection of all rational functions
with coefficients in F and indeterminants in X. We extend the definition of i-homogeneous to this
field by saying that a rational function f ∈ F(X) is i-homogeneous of degree d if f = p/q where
p, q ∈ F[X] and q is i-homogeneous of degree n and p is i-homogeneous of degree n + d (for some
non-negative integer n). Note that d could be negative.

Let K ⊆ F(X) denote the set of all rational functions which are i-homogeneous of degree 0 for
all i ∈ I. It is quick to check that K is a field. We can thus consider F(X) to be a vector space
over K. In this space, let V denote the subspace spanned by X.

By assumption, the K-vector space V admits a basis B. In particular, since B spans V , for
each v ∈ V , we can find a function αx : B → K with finite support satisfying v =

∑
b∈B αv(b) · b

(note that this is a finite sum since αv has finite support). Now, fix any i ∈ I and any x, y ∈ Xi.
Naturally, y/x ∈ K and so ∑

b∈B
αy(b) · b = y =

y

x
x =

∑
b∈B

y

x
αx(b) · b.

Since B is linearly independent, this implies that αy(b) =
y
xαx(b) =⇒ αy(b)/y = αx(b)/x. Thus,

for each i ∈ I, there is a function βi : B → F(X) with finite support satisfying αx(b) = βi(b) · x
for all x ∈ Xi. Define Bi = suppβi, which is finite. By construction, for each b ∈ Bi, βi(b) is
i-homogeneous of degree −1, and is also j-homogeneous of degree 0 for each j ̸= i. Thus, if we
write βi(b) = pi(b)/qi(b) in reduced form where pi(b), qi(b) ∈ F[X], we must have that qi(b) is
i-homogeneous of strictly positive degree when b ∈ Bi. Let Ai(b) ⊆ Xi denote the set of variables
which appear within qi(b); we know that if b ∈ Bi, then Ai(b) is non-empty (and finite since qi(b)
is a polynomial). Finally, set Ai =

⋃
b∈Bi

Ai(b), which is a non-empty, finite subset of Xi. This
concludes the proof.

2∀x(x ̸= ∅ =⇒ (∃y ∈ x)(y ∩ x = ∅)).
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